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ABSTRACT 

In this paper an attempt has been made to solve the inverse problem of thermoelasticity in order to determine the 
heating temperature, temperature distribution and thermal stresses on the outer surface of an anisotropic cylinder 
defined as   with the help of integral transform technique. 
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1.  Introduction 

The inverse thermoelastic problem consists of 
determination of the temperature of the heating 
medium, the heat flux on the boundary surfaces 
of the solids when the conditions of the 
displacement and stresses are known at some 
points of the solid under consideration. The 
inverse problem is very important in view of its 
relevance to various industrial machines 
subjected to heating such as main shaft of lathe 
and turbines roll of rolling mills, to analysis of 
experimental data and measurement of 
aerodynamic heating. Grysa and Cialkawski 
[5] and Grysa and Kozlowski [6] one 
dimensional transient thermoelastic problems 
derived from the heating temperature and the 
heat flux on the surface of an isotropic infinite 
slab are investigated. Deshmukh and 
Wankhede [3] are investigated the temperature, 
displacement and stress functions infinite 
isotropic hollow cylinders of small thickness. 
Direct problems on anisotropic bodies are 
considered Nowacki W. [7, 8], Nowinski [9], 
Avtar Sing [1] and D. Rama Murthy [2]. 
Recently Deshmukh [4] studied the inverse 
problem of an anisotropic body and determined 
the thermal stresses. Hence an attempt to solve 
the inverse thermoelastic problem in an 
anisotropic cylinder is consider to determine 
the heating temperature, temperature 
distribution and thermal stresses on the outer 
surface of the cylinder defined as   with the 
help of integral transform technique. The 
results are illustrated in the form of series. 

2.  Statement of the Problem 

Consider an infinite circular cylinder. The 
surfaces 0r  and ar   are bounded by the 

planes 0  to 0 . On the planes 0

and 0 , temperature is kept zero. Known 

temperature is taken on the surface ar  , 

where ba 0 . The problem is treated as one 
inverse quasi-static thermoelasticity i.e. the 
variation occurs with respect to time occurs 
only so far as the temperature’s concerned 
while the stresses and displacement with 
respect to time are neglected hence, in the field 
equations energy equation only contains what 
is known as the term relating to the velocity of 
heat propagation. A materials with cylindrical 
anisotropic are taken into consideration. 

Basic Equation 

The heat transport for cylindrically aelotropic 
materials is given by 
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21, kk Are thermal conductivity in r  and   

directions respectively. Equation (7.4.1) can be 
written as 

t

TpT

r

p

r

T

rr

T





















2

2

2

2

2

2

2

2 1

           
(2.2) 

ar 0 , 00  , 0t  

with the initial condition 
0)0,,( rT                                          (2.3) 

and the boundary conditions 
0),0,( trT ,                                         (2.4) 
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 (unknown)              (2.6) 

and the interior condition 
),(),,( tgtT    (known)                 (2.7) 

The equations (2.1) to (2.7) constitute the 
mathematical formulation of heat conduction 
under consideration. 

3.  Solution of the Problem: Determination 
of the Temperature and Unknown Function 

Applying the finite Fourier sine transform to 
the equations (2.2), (2.3), (2.6), (2.7) and using 
the conditions (2.4), (2.5) and then finally 
taking Laplace transform using the condition 
(2.3) one gets 

0
1

2

2
2

2

2










 
 s

ss T
r

q
dr

Td

rdr

Td

          

(3.1) 
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and ),(),,( sgsT msms             (3.4) 

where sT  is Laplace transform of sT  and s  is 

its parameter. 
The solution of equation (7.5.9) are 

)()( 21 qrKcqrIcTs  
                       

(3.5) 

where )(qrI   and )(qrK   are the modified 

Bessel’s functions of order   and 1c  and 2c  

are the constants. As r  tends to zero )(qrK   

tends to infinity but sT  are finite therefore the 

constant 2c must be zero. Hence one gets 

)(1 qrIcTs 
                                      

(3.6) 

On applying the condition one gets 
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Taking inverse Laplace transform to equations 
(3.1) and (3.8) and taking the inverse sine 
transform to the resultants one gets the 
expression of temperature ),,( trT   and 

unknown function ),( tf   respectively as
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nm,  are the positive integers and n ,,,, 321   are the roots of the transudental equations 

0)(  nJ (3.11) 

 
4.  Solution of the Associated Problem of Thermal Stresses 

The stresses in terms of the stress function ),,( trF   are given by 
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since the problem is that of quasi-static one the equations of equilibriums in terms of stresses are 
satisfied by the above expressions. All the compatibility equations except one are satisfied. The 
only equation to be satisfied is given by 
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for cylindrically aelotropic materials the stress-strain relations are given by 

Taaae rrrr 11211                                                                                                (4.5) 

Taaae rr 22212                                                                                              (4.6) 

  rr ae 66                                                                                                                  (4.7) 

substituting (4.1), (4.2), (4.3), (4.5), (4.6) and (4.7) in (4.4) one gets 
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1a , 2a  are the coefficients of thermal expansions in r  and   directions respectively on putting the 

value of T  from equation (3.9) in equation (4.8) and noting that 
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one gets 
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The solution of equation (4.10) is obtained by assuming 
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On putting (4.11) in (4.10) one gets  
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where 1mC  and 2mC   are the arbitrary constants and 1  and 2  are roots of  
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Substituting (4.12) in equation (4.1) and (4.3) one gets  
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The constants 1mC  and 2mC  are determined using the boundary conditions which is taken as 
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5.  Special Case 

Setting ttg 2
0 )(),(   (5.1) 

Applying finite Fourier sine transformed defined in equation (5.1) one gets 
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Substituting equation (5.2) in equations (3.9), (3.10), (4.15) and (4.16) one obtains 
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Concluding Remarks 

In this paper we studied the inverse 
thermoelastic problem in an anisotropic 
cylinder. The analytical expressions for heating 
temperature, temperature distribution and 
thermal stresses are determined on the outer 
surface of the cylinder, defined as 

00,0  ar  with the help of integral 

transform technique. The results are illustrated 
in the form of series. 
Any particular case of special interest can be 
derived by assigning suitable values to the 
parameters and functions are valid in the 
expressions (3.9), (3.10), (4.15) and (4.16). 
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