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ABSTRACT 

In this paper, we derive field equations of ),( TRf  gravity with the help of a spatially homogenous and anisotropic 

Bianchi type 0VI  metric in presence of bulk viscous fluid, containing one-dimensional cosmic strings. To obtained the 

determinate solution, a spatial form of deceleration recently proposed Singha and Debnath for FRW metric is used. We 

have also used the barotropic equation of state for density and the pressure and bulk viscous pressure is assumed to be 

proportional to energy density. Some physical and Kinematical properties of the model are also discussed. 

________________________________________________________________________________ 
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1 Introduction 

Harko et al. (2011) developed ),( TRf modified 

theory of gravity, where the gravitational 

Lagrangian is given by an arbitrary function of 

the Ricci scalar R  and the trace T  of the 

energy-momentum tensor. It is to be noted that 

the dependence of T may be induced by exotic 

imperfect fluid or quantum effects. they have 

obtained the gravitational field  equations in 

the metric formalism, as well as, the equations 

of motion of test particles, which follows from 

the covariant divergence of the stress-energy 

tensor. They have derived some particular 

models corresponding to specific choices of 

function ),( TRf . They have demonstrated the 

possibility of reconstruction of arbitrary FRW 

cosmologies by an appropriate choice of the 

function ),( TRf .    

In ),( TRf  gravity, the field equations are 

obtained from a variational, Hilbert-Einstein 

type, principle. 

The action principle for this modified theory 

),( TRf  gravity is given by 

                 

   xdgLxdgTRf
G

S m
44),(

16

1


   (1.1) 

Where ),( TRf  is an arbitrary function of the 

Ricci scalar R, T is the trace of  stress energy 

tensor of matter, ijT and mL  is the matter 

Lagrangian density. 

We define the stress energy tensor of matter as  

                mijij L
g

g

g
T


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
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)(2
,      (1.2) 

And it’s trace by ij
ijTgT   respectively. BY 

assuming that mL  of matter depends only on 

the metric tensor components ijg , and not on 

it’s derivatively, we obtain 
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m
mijij
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(1.3) 

 By varying the action principle (1.1) with 

respect to metric tensor, the corresponding 

field equations of ),( TRf  gravity are obtained 

as 
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Here       

R

TRf
f R
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TRf
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),(
  

 Here i
 
is the covariant derivation and ijT

 
is 

standard matter energy-momentum tensor 

derived from the Lagrangian  mL . 

It can be observed that when )(),( RfTRf  , 

then (1.4) yield the field equations of )(Rf  

gravity. 

The problem of the perfect fluids described by 

an energy density  , pressure p and four 

velocity iu  is complicated. Since there is no 
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unique definition of the matter Lagrangian. 

However, here, we assume that the stress 

energy tensor of the matter is given by 

ijjiij pguupT  )(
             

         (1.6) 

And the matter Lagrangian can be taken as 

pLm   and we have 

0 ij
i uu

, 
1i

iuu                           (1.7) 

Then with the use of equ. (5) we obtain for the 

variation of stress-energy of perfect fluid the 

expression 

ijijij pgT  2
                

               (1.8) 

It is mentioned here that these field equations 

depend on physical nature of the matter field. 

Many theoretical models corresponding to 

different matter contributions for ),( TRf  

gravity are possible. However, Harko et. al. 

gave three classes of these models 


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)(2),( TfRTRf                               (1.9) 

as a first choice, where )(Tf  is an arbitrary 

function of trace of the stress energy tensor of 

matter 

       Then from (1.3) and (1.4), we get the 

gravitational field equation as 

                  

ijijijijijij gTfTfTTfTRgR )()('2)('28
2

1
            

                                                                 (1.10) 

Where the overhead prime indicates 

differentiation with respect to the argument .  

If the matter source is a perfect fluid, 

                 ijijij pgT  2
 

Then the field equations become 

                

  ijijijijij gTfTpfTTfTRgR )()('2)('28
2

1
 

      
        

                                                                 (1.11) 

At the early stages of the evolution of 

Universe, in general , it is spatially 

homogenous and anisotropic. Bianchi spaces 

are useful tools for constructing spatially 

homogenous and anisotropic cosmological 

models in general relativity and scalar-tensor 

theories of gravitation. Reddy et. al. (2012a, 

2012b) have obtained Kaluza- Klein 

cosmological model in the presence of perfect 

fluid source and Bianchi type III cosmological 

model in ),( TRf  gravity using the assumption 

of law of variation for the Hubble parameter 

proposed by Bermann (1983), Adhav (2012) 

has obtained LRS Bianchi type-I cosmological 

model in ),( TRf  gravity using the same 

assumption of law of variation for the Hubble 

parameter proposed by Bermann (1983). 

Shamir et al. obtained exact solution of Bianchi 

type-I and type-V cosmological model in 

),( TRf  gravity. Chaubey and Shukla (2013) 

have obtained a new class of Bianchi 

cosmological models in ),( TRf  gravity. Reddy 

and Santi Kumar (2013) have presented some 

anisotropic cosmological models in this theory. 

Rao and Neelima (2013) have discussed perfect 

fluid Einstein-Rosen universe in ),( TRf  

gravity. Recently Rao and Neelima (2013) 

have obtained perfect fluid Bianchi type VI0 

perfect fluid model in ),( TRf  gravity. 

At the time of particle creation in the early 

universe and during formation of galaxies (Hu 

1983), when neutrinos decoupled from cosmic 

fluid (Misner 1968) viscosity arises. Many 

authors have studied bulk viscous cosmological 

models in general relativity. Johri and Sudarsan 

have investigated bulk viscous cosmological 

model in Brans-Dicke theory of gravitation. 

Bulk viscous cosmological model in Saez-

Ballester theory of gravitation have been 

discussed be 

several authors. Recently Rao et al., Reddy et 

al., Naidu et al. have discussed the bulk viscous 

cosmological models in modified theory of 

gravity proposed by Harko et. al (2011). Very 

recently Naidu et al. investigated Bianchi type 

V Bulk viscous string cosmological model in 

f(R,T) gravity. 

In this paper, we have studied Bianchi type 0VI

string Cosmological model of the early 

universe with bulk viscosity in modified theory 

of f (R,T) gravity with special form of 

deceleration parameter. By using the barotropic 

equation of state and bulk viscous pressure is 

assumed to be proportional to energy density, 

solutions of field equations obtained. We have 

also discussed the physical and kinematical 

properties of the models. 
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2 Metric and field equations 

We consider the spatial homogenous and 

anisotropic space-time represented by the 

Bianchi type 0VI  metric as  

                
222

3
222

2
22

1
22 dzeadyeadxadtds xx  

  
(2.1) 

Where 321 ,, aaa  are functions of cosmic time t 

.         

We consider the energy momentum tensor for 

bulk viscous fluid containing one dimensional 

cosmic strings as 

jiijjiij xxpguupT   )(              (2.2) 

 Here we take 

Hpp 3                                       (2.3) 

Where   is the rest energy density of system, 

)(t  is the coefficient of the bulk viscosity, 

H3  is usually known as bulk viscous 

pressure, H  is the Hubble’s parameter, iu is 

the four velocity of the fluid, ix  is the direction 

of the string and  is the string tension density. 

Also iiu 4  is the four velocity vector which 

satisfies                                                              

1 j
i

j
i

ij xxuug and 0j
i xu                   (2.4) 
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1   pTTTTT

   
             (2.5) 

Here we also consider ,p and   as functions 

of time t only. 

Using co-moving coordinates and  Eqs. (2.2) – 

(2.5), the ),( TRf  gravity field equation (2.1) 

with proper choice of the function (Harko et al. 

2011) 

TTf )(     where   is constant.                    

(2.6) 

For metric (2.1) , field equation yield the form  
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where an overhead dot represent differentiation 

with respect to t. 

 We define the following parameters for the 

metric (2.1) which will be used in solving the 

above field equations. 

 The spatial volume and scale factor are given 

by 

      321
3 aaaV 

  
                           (2.12) 

     3

1

321 )( aaaa                             (2.13) 

The physical quantities of observational 

interest in cosmology are the expansion scalar

 , the mean anisotropy parameter hA and shear 

scalar 2  which are defined as
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3 Solutions and the model 

On integrating equation .(2.11), we obtained 

23 kaa 
                                    

(3.1) 

Where k is a constant of integration, which can 

be chosen as unity without loss of any 

generality, so that we have 

23 aa 
                                       

(3.2) 

The field Equations. (2.7) – (2.10) reduces to 

the following independent equations 
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 Now equations. (3.2) – (3.5) are a system of 

four independent equations in six unknowns,  

,,,, 321 paaa and  . Also the equations are 

highly non-linear. Hence to find a determinate 

solution we use the following physically 

plausible conditions: 

i) Spatial form of deceleration parameter 

as  

ka

k

a

a
aq




1
1

2



      
                       (3.6) 

Where a is mean scale factor of the universe,

0k  is constant. This law has been recently 

proposed by Singha and  Debnath for FRW 

metric. 

 We know that the universe has 

i)decelerating expansion if 0q  

ii)an expansion with constant rate if 0q  

iii)accelerating power law expansion if 
01  q  

iv)exponential expansion (or deSitter 

expansion) if 1q  

v)super-exponential expansion if 1q , 

From (3.6) we obtain the Hubble parameter as 

)1( kam
a

a
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Where m is an integration constant. 

Now by integrating above equation, one can 

obtain the mean scale factor as 
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Choosing 1m , the mean scale factor 

becomes 

kktea

1
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ii) The shear scalar 
2  is proportional to 

scalar expansion   so that we can take 

Collins et al. (1980) 
nBA                                        

(3.10) 

iii)  For a barotropic fluid, the combined effect 

of the proper pressure and the bulk viscous 

pressure can be expressed as 
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(3.11) 
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(3.12) 

And 0  and   are constants. 

 Now from Eqs. (2.13),   (3.2), (3.9) and (3.10), 

we obtain  


















)1)(2(

3

)1)(2(

3

)1(

)1(

32

1

qn

qn

n

kt

kt

eaa

ea

      
(3.13) 

Using equations (3.13) and the metric (2.1) can 

be written as 
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4 Physical properties of the model 

Equation (3.14) represents the bulk viscous 

string Bianchi type- 0VI  cosmological model in 

the ),( TRf modified theory of gravitation 

which is physical significant for the study of 

early stage of universe. The physical and 

kinematical parameter of the model, which are 

important for the discussion of cosmological 

model  (3.12) are the following. 
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The energy density, 
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The isotropic pressure, 
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The coefficient of bulk viscosity, 
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                                    Fig. The variation of q vs t  

  

Fig shows the variation of deceleration parmeter vs cosmic time t, for data1 1k  , for data 2 5.k  

for data3 2k  
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The above results are useful to discuss the 

behavior of ),( TRf  gravity cosmological 

model given by (3.14).  The results (3.14) 

possess initial singularity of the point. Also, it 

can be  observed that the physical and 

kinematical parameters 2,,,,  Hp  and 

approach infinity as 0t  and  approach to 

zero as t ,since 0k . The results (4.4) 

implies that the universe is expanding, super 

exponentially if 1k  , with constant rate if 

1k , acceleration expanding if as 1k  as 

0t . The universe is expanding exponentially 

as t . The results (4.10) implies that 

parameter  initially approaches to infinity, for  

2

6




n

n
k .  It can also be observed that the 

model is expanding with time. From Equ. (4.2) 

and (4.6), it can also be observed that the 

model in this theory becomes anisotropic 

except 1n . Also, it can be observed that for 

1n , the model is isotropic and shear free.  

5 Conclusions 

In this paper, we have presented spatially 

homogeneous and anisotropic Bianchi type 0VI  

cosmological model in the presence of bulk 

viscous fluid with spatially form of 

deceleration parameter & one dimensional 

cosmic strings in ),( TRf  gravity formulated by 

Harko et. al. (2011) by modifying general 

relativity to explain the challenging problem of 

late time acceleration of the universe. We have 

found  a determinate solution of the highly 

non-linear field equations of this theory, by 

using i) special form of deceleration parameter 

recently proposed by Singha and  Debnath ii) a 

barotropic equation of state for fluid for 

pressure and energy density iii) proportionality 

of the bulk viscous pressure and  the energy 

density. It is observed that the model have 

initial singularity. Also It is observed that 

initially, the universe is expanding, super 

exponentially if 1k  , with constant rate if 

1k , acceleration expanding if 1k . The 

universe is expanding exponentially for large 

value for of cosmic time t.  It is also observed 

that the bulk viscosity decrease with increase in 

cosmic time which leads to  the inflationary 

model for  
2

6




n

n
k ..  
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