BUTTERFLY DIVERSITY OF ISAPUR WILDLIFE SANCTUARY, MAHARASHTRA, INDIA

R.S. Virani¹ and B.K. Madavi²

¹Department of Zoology & ²Department of Chemistry, Shivramji Moghe Arts, Commerce and Science College, Kelapur (Pandharkawada), Dist. Yavatmal, MS, India ¹ramzan_virani@yahoo.co.in

ABSTRACT

A study was conducted toevaluate the butterfly diversity in the Isapur Wildlife Sanctuary, Maharashtra. The study revealed presence 87 butterfly species dominated by family Nymphalidae (32.18 %), Lycaenidae (27.59 %) followed by Pieridae (27.59 %), Hesperiidae (18.75%) and Papilionidae (6.90 %). It appears that the butterfly abundance increased from monsoon to winter while decreased in the summer and pre monsoon due to possibly with the unavailability of nectar and the changes in temperature and humidity of the habitats concerned. The results of the study indicated that the Isapur Wildlife Sanctuary, Maharashtrahas a healthy environmental setup that accommodates rich butterfly diversity.

Keywords: Butterfly, Diversity, Isapur Wildlife Sanctuary, Maharashtra.

Introduction

One of the most interesting features of the earth is its extraordinary diversity that included about 10 million species (Whitaker and Captain (2008). This diversity is the base for sustenance of the ecosystems. Functional aspects of the species to provide goods and services for human well-being. Study of regional diversity enables the evaluation of the possible functional roles of the species (Wilson 1997). In this view, studies on species diversity are necessary to understand the effects of human development on the reliability and sustenance of an ecosystem.

The diversity of insects has been point out in many studies due to their provision of ecosystem services such as pollination, pest decomposition, control. nutrient and maintenance of species in the terrestrial and aquatic ecosystems (Koh and Sodhi 2004; Losey and Vaughan 2006). Among insects, butterflies are the most attractive elements of the universe. They perform prominent roles in pollination (Tiple et al. 2006; Tiple 2018). Adult butterflies are dependent on nectar and pollen as their food while the caterpillars are dependent on specific host plants for foliage (Nimbalkar et al. 2011). Butterflies are considered as the best indicators of the health of any specified terrestrial ecosystem (Thomas 2005: Bonebrake et al. 2010). Butterflies are therefore treated as an important model group in ecology and conservation (Watt and Boggs

2003; Ehrlich and Hanski 2004; Mukherjee et al. 2015).

In this context, the conservation of butterflies is necessary to sustain varied kinds of ecosystem services for human well-being. In view of the essential ecosystem services rendered by butterflies and to promote conservation management, the present study was aimed at the estimation of the butterfly diversity in the Isapur Wildlife Sanctuary, Maharashtra, India. The results of the study are supplement expected to the necessary information on the conservation management and enhance the ecological roles of the butterfly species in the Isapur Wildlife Sanctuary and similar geographical regions.

Materials and methods

Study area

The Isapur Wildlife Sanctuary is a compact diversified blocks in Maharashtra State of India, with respect to biodiversity. Its healthy mountainous climate. terrain. rugged configuration and sudden fall in elevation are phenomenal. It spreads over in Yavatmal and Hingoli district. The area of the sanctuary is covered by Pusad Tahsil of Yavtmal district and Kalamnuri and Khanapur Tahsil of Hingoli district. It located among Pusad Division (E 77° 25'50" and N 19° 43' 35") and Hingoli Division (E 77⁰ 21' 11" and N 19⁰ 51'35") total area of forest is 2923.29 Ha. The climatic condition of this area is characterized by a hot summer, well-distributed rainfall during the south-west monsoon season and generally dry weather during rest of the year. The cold season is from December to February(Yavatmal Gazetteer 2019).

Source: https://www.veethi.com/places/maharashtra-yavatmal-district-405.htm

Survey method

The butterflies were observed in the sampling sites for a period of 1 year between January 2019 and December 2019. During the survey, an efficient protocol was adopted. The survey was made using a "Pollard Walk" method (Pollard 1977; Pollard and Yates 1993) with necessary modifications. Study area was visited twice a month from early morning (7:00 AM) to afternoon (5:00 PM) during good weather periods.

Species identification

After detection, a specimen was photographed (Nikon D7100; Nikon Inc., Tokyo,Japan) and identified with the help of visible structural features. For identification and comparative studies of observed specimens, keys and methods suggested by Evans (1932), Wynter-Blyth (1957), Haribal (1992), Kunte (2000) and Kehimkar (2008) were adopted.

Data analysis

Species occurrence analysis was carried out by Microsoft excel program with using the following formulas. Relative Dominance (RD) of species was calculated as $[RD=Ni \times 100/Nt]$ where, Ni is number of individuals of species and Nt is total number of individuals all species (Basavarajappa 2006; Joshi 2014). Relative Occurrence (RO) of family was calculated as [RO= Ns \times 100/Nt] where, Ns is number of species of each family and Nt is total number of all species (Basavarajappa 2006; Joshi 2014). Mean percent occurrence (M%) for month was calculated as [M% = Nm \times 100 /Nt] where, Nm is number of individuals in each month and Nt is total number of individuals during complete study tenure (Basavarajappa 2006; Joshi and Tantarpale 2016). The mean values of the pooled species occurrence data were used to calculate the monthly diversity of and to categorize the local status of species.

The diversity assessment enabled highlighting the observed species richness pattern of the butterfly species. The diversity indices were quantified with the help of PAST Version 1.60 software (Palaeontological Asso., Norway; Hammeret al2001). The species diversity was calculated using Shannon diversity index that calculated as $[H' = -\sum_{i=1}^{R} Pi \log Pi]$, where Pi is proportion of the first species which is given by Pi= ni/N (Magurran 1988);species richness was obtained by using Margalef equation [R= (S-1)/ log N], Where, R is Index of species richness, S is Total number of species and N is Total No. of individuals (Magurran 1988); while Species equitability was determined by equation of Pielou $[J= N_1/N_0]$ where N_1 is Number of abundant species in the sample and N_0 is Number of species in the sample (Hammeret al2001). The similarity association matrix upon which the cluster based was computed using the nearest neighbour pair linkage algorithm of Euclidean distance index for presence and absence data (Hammeret al2001).

The differences between the diversity and evenness indices with species occurrence among different study months were statistically analyzed by using Analysis of variance (ANOVA). The statistical analyses were performed following Zar (1999) using the SPSS version 10 (SPSS Inc., Chicago, Il, USA; Kinnear and Gray 2000).

Results

During this study, 87 butterfly species under five families were observed in study area (Table 1). Based on value of butterfly relative dominance in study area, 37.93 % species was categorized as abundant species whereas 39.08 % species was common, 8.05 % species was frequent, 12.64% was occasional, and 2.30 % species was very rare. The maximum number of butterfly species were recorded under family Nymphalidae (32.18 %), Lycaenidae (27.59 %) followed byPieridae (27.59 %), Hesperiidae (18.75%) and Papilionidae (6.90 %) (Figure 1).

dendrogram developed by Euclidean Α distance cluster analysis was observed to be multifaceted and showed variation in the level of similarity in the number of butterfly species in 12 months. The months with the minimum tomoderate number of species belong to one cluster, whereas the rest of the months with moderate to maximum number of species formed another cluster (Figure2). It appears that the butterfly abundance increased from monsoon to winter while decreased in the summer and pre monsoon due to possibly with the unavailability of nectar and the changes in temperature and humidity of the habitats concerned.

Observations on the monthly variations of butterfly abundances indicate peak from July to January while a low from February to May (Figure3). Mean percent abundance of was significantly different butterflies (F =80.23, df = 11, p < 0.05); Shannon diversity values of butterflies were significantly different (F= 102.3, df = 11, p < 0.05); species evenness among different months was significantly different (F=109, df = 11, p < 0.05) while species richness among the study months was significantly different (F = 97.02, df = 11, p <0.05). A trend in mean% abundance, Shannon richness diversity, species and species equitability showed the contradictory patterns (Figure 5).

Common Name	Scientific Name	IUCN status	Relative Dominance	Local Status
Family: Papilionidae				
Tailed Jay	Graphium agamemnon (Linnaeus, 1758)	NE	1.272	Common
Common Jay	Graphium doson (Felder and Felder, 1864)	NE	1.198	Common
Common rose	Pachliopta aristolochiae (Fabricius, 1775)	LC	1.087	Common
Crimson rose	Pachliopta hector (Linnaeus, 1758)	NE	1.026	Common
Lime Butterfly	Papilio demoleus (Linnaeus, 1758)	NE	1.444	Abundant
Common Mormon	Papilio polytes (Linnaeus, 1758)	NE	1.351	Abundant
Family: Pieridae				
Common Albatross	Appias albino (Fabricius, 1775)	NE	1.135	Common
Indian Pioneer	Belenois aurota (Fabricius, 1793)	NE	1.536	Abundant
Common Emigrant	Catopsilia pomona (Fabricius, 1775)	NE	1.004	Common
Mottled Emigrant	Catopsilia pyranthe (Linnaeus, 1758)	NE	1.332	Abundant
Common Gull	Cepora nerissa (Fabricius, 1775)	NE	1.495	Abundant
Small salmon Arab	Colotis amata (Butler, 1870)	NE	0.112	Rare
Crimson Tip	Colotis danae (Fabricius, 1775)	NE	0.194	Rare
Small Orange Tip	Colotis etrida (Boisduval, 1836)	NE	1.147	Common
White Orange Tip	Ixias Marianne (Cramer, 1775)	NE	1.122	Common
Yellow Orange Tip	Ixias pyrene (Linnaeus, 1764)	NE	0.778	Occasional

Table 1. Diversity of Butterflies during January 2019 to December 2019in the Isapur WildlifeSanctuary, Maharashtra, India

Vidyabharati International Interdisciplinary Research Journal 13(1)

ISSN 2319-4979

Common Jazabal	Dolias quaharis (Drury 1773)	NE	1 326	Abundant
One Spot Grass Vellow	Euroma andarsoni (Moore, 1865)		1.520	Abundant
Three Spot Grass Vellow	Eurema blanda (Roisduval, 1836)	NE	1.006	Common
Small Crass Vellow	Eurema briaitta (Bolsauval, 1850)		1.090	Common
Common Cross Vallew	Eurema booghe (Linnoone, 1759)		1.237	Abundant
Common Grass Fellow	Eurema necabe (Linnaeus, 1738)	INE	1.412	Abundant
Spotless Grass Yellow	Eurema laeta (Boisduval, 1836)	NE	1.485	Abundant
Psyche	Leptosia nina (Fabricius, 1/93)	NE	0.768	Occasional
Common Wanderer	Pareronia valeria (Cramer, 1776)	NE	1.218	Common
Family: Nymphalidae				
Tawny Castor	Acraea violae (Fabricius, 1775)	NE	1.068	Common
Angled Castor	Ariadne ariadne (Linnaeus, 1763)	NE	1.262	Common
Common Castor	Ariadne merione (Cramer, 1779)	NE	1.176	Common
Plain Tiger	Danaus chrysippus (Linnaeus, 1758)	NE	1.517	Abundant
Striped Tiger	Danaus genutia (Cramer, 1779)	NE	1.386	Abundant
Common Crow	Euploea core (Cramer, 1780)	LC	1.571	Abundant
Baronet	Euthalia nais (Cramer, 1779)	NE	1.020	Common
Great Eggfly	Hypolimnas bolina (Linnaeus, 1758)	NE	1.163	Common
Danaid Eggfly	Hypolimnas misippus (Linnaeus, 1764)	NE	1.045	Common
Peacock Pansy	Junonia almana (Linnaeus, 1758)	LC	1.431	Abundant
Grev Pansy	Junonia atlites (Linnaeus, 1763)	NE	1.154	Common
Yellow Pansy	Junonia hierta (Fabricius, 1775)	LC	1.211	Common
Chocolate Pansy	Junonia inhita (Cramer 1779)	NE	1.058	Common
Lemon Pansy	Junonia lemonias (Linnaeus, 1758)	NE	1 294	Abundant
Blue Pansy	Junonia orithya (Linnaeus, 1750)	NE	1.274	Abundant
Common Evoning	Junonia Oranya (Emilaedis, 1704)	IL.	1.547	Abundant
Proum	Melanitis leda (Linnaeus, 1758)	NE	1.364	Abundant
BIOWII Creat Evening Drovm	Malanitia ritanius (Linnagua 1759)	NE	0.700	Occasional
Great Evening Brown	Metantils zitentus (Linnaeus, 1738)	INE	0.790	Common
Common Bush Brown	Mycalesis perseus (Fabricius, 1775)	NE	1.036	Common
Common Sailer	Neptis hylas (Linnaeus, 1764)	NE	1.014	Common
Common Leopard	Phalanta phalantha (Drury, 1773)		1.457	Abundant
Blue Tiger	Tirumala limniace (Cramer, 1775)	NE	1.422	Abundant
Commander	Moduza procris (Cramer, 1777)	NE	1.246	Common
Painted Lady	Synthia cardui (Linnaeus, 1764)	NE	0.994	Common
Joker	Byblia ilithyia (Drury, 1773)	NE	0.985	Common
Common Three Ring	Ypthima asterope (Klug, 1832)	NE	1.249	Common
Large Three Ring	<i>Ypthima nareda</i> (Kirby, 1871)	LC	0.908	Frequent
Anomalous Nawab	Polyura agrarian (Linnaeus, 1764)	NE	0.736	Occasional
Towny Rajah	Charaxes bernardus (Fabricius, 1793)	NE	0.743	Occasional
Family: Lycaenidae				
Pointed Ciliate Blue	Anthene lycaenina (C. Felder, 1868)	NE	1.256	Common
Large Oak Blue	Arphopala amantes (Hewitson, 1862)	NE	0.730	Occasional
Dull Babool Blue	Azanus uranus (Butler, 1886)	NE	0.870	Frequent
Bright Babool Blue	Azanus ubaldus (Stoll, 1782)	NE	0.682	Occasional
Lime Blue	Chilades lajus (Stoll, 1780)	NE	1.562	Abundant
Gram Blue	Euchrysops cneius (Fabricius, 1798)	NE	1.310	Abundant
Pea Blue	Lampides boeticus (Linnaeus, 1767)	NE	1 342	Abundant
Zebra Blue	Lentotes plinius (Fabricius, 1793)	NE	1 504	Abundant
Tailless Line Blue	Prosotas dubiosa (Semper 1879)	NE	1.112	Common
Common Line Blue	Prosotas nora (Felder 1860)	NE	1.112	Common
Guava Blue	Virachola isocrates (febricius, 1703)	NE	0.720	Occasional
Dark Grass Plus	Zizaania kansandna (Mooro, 1865)	NE	1 274	Abundant
Lasser Cross Dive	Zizing otic (Fobuloine, 1797)		1.3/4	Abundant
Lesser Grass Blue		INE	1.291	Abundant
Tiny Grass Blue	<i>Lizuta nylax</i> (Fabricius, 1775)	NE	1.441	Abundant
Plum Judy	Abisara echerius (Moore, 1901)	NE	0.752	Occasional
Common Pierrot	Castalius rosimon (Fabricius, 1775)	NE	0.857	Frequent
Forget-Me-Not	Catochrysops strabo (Fabricius, 1793)	NE	1.399	Abundant
Plains Cupid	Luthrodes pandava (Horsfield, 1829)	NE	0.943	Frequent
Indian cupid	Cupido lacturnus (Godart, 1824)	NE	1.077	Common
Grass Jewel	Freyeria trochylus (Freyer, 1845)	NE	1.469	Abundant
Common Cerulean	Jamides celeno (Cramer, 1775)	NE	1.485	Abundant

Indian Red Flash	Rapala airbus (Fabricius, 1787)	NE	0.663	Occasional
Common Silverline	Spindasis vulcanus (Fabricius, 1775)	NE	1.530	Abundant
Rounded Pierrot	Tarucus extricates (Kollar, 1848)	NE	1.285	Abundant
Family: Hespiridae				
Brown awl	Badamia exclamationis (Fabricius, 1775)	LC	1.463	Abundant
Plain Banded Awl	Hasora vita (Cramer, 1780)	NE	0.867	Frequent
Rice swift	Borbo cinnara (Wallace, 1866)	NE	1.559	Abundant
Small branded swift	Pelopidas mathias (Fabricius, 1798)	NE	1.339	Abundant
Conjoined Swift	Pelopidas conjuncta (Moore, 1878)	NE	0.959	Common
Paintbrush Swift	Baoris farri (Moore, 1878)	NE	0.886	Frequent
Common Straight Swift	Parnara guttatus (Bremer and Gray, 1853)	LC	1.205	Common
Indian Palm bob	Suastus gremius (Fabricius, 1798)	NE	0.979	Common
Dark Palm-Dart	Telicota ancilla (Moore, 1878)	NE	1.141	Common
Indian skipper	Spialia galba (Fabricius, 1793)	LC	0.819	Frequent
Grass Demon	Udaspes folus (Cramer, 1775)	NE	0.692	Occasional

Relative Occurrence of Families

Figure 1. Relative dominance of butterfly families in the Isapur Wildlife Sanctuary, Maharashtra, India

Figure 2. Dendrogram showing similarity in number of butterfly species composition among the studied month during January 2019 to December 2019

Figure 3. The values of the diversity indices in different months observed through the random sampling of butterflies in the Isapur Wildlife Sanctuary, Maharashtra, India

Discussion

The butterflies are the ecologically important serves as indicators creature that of environmental conditions (Stefanescu et al. 2004). Observations on the butterfly diversity provide the information about variations in the species richness and the abundance in relation with the vegetation along thelandscape and the interactions(Öckinger and species Smith 2006;Öckinger et al 2006; Mutmainnah and Santosa 2019). In this context, the diversity of Butterflies in the Isapur Wildlife Sanctuary, Maharashtra, India was studied during January 2019 to December 2019. The study area is bordering to the Isapur dam, largest dam in district It is dominated by the dense vegetation with variety of plant species that host the butterfly populations. The earlier studies showed that heterogeneity of the habitats in terms of the available plant species supports the rich butterfly diversity (Kuussaari et al 2007; Mukherjee et al 2015). Earlier studies on the butterfly diversity in the agricultural landscape contrast to the urban and suburban regions show that the richness increased with the availability of the green space and the heterogeneity of the habitats in terms of the available plant species (Öckinger et al, 2009; Mukherjee et al 2015). Consistent with these studies the present observation records a total of 87 species belonging to five families from study area.

The maximum number of butterfly species was recorded under family Nymphalidae, Lycaenidae followed by Pieridae, Hesperiidae and Papilionidae. Among these 87 species Based on value of butterfly relative dominance in study area, 41.38 % species was categorized as abundant species whereas 39.08 % species was common, 5 % species was frequent, 11.49 % was occasional and 2.30 % species was rare. The rare species included Colotis amata and Colotis danae. Out of these 87 butterfly species, 14 species specified under Indian (Protection) Act, 1972 Wildlife were encountered in good numbers. The butterflies Pachliopta hector, Castalius *rosimon*and Virachola isocratesare placed in Schedule I Part IV, the species Appias albino, Cepora Hypolimnas misippus, Melanitis nerissa, bernardus, zitenius, Charaxes Anthene Euchrysops cnejus, Lampides lycaenina, boeticus and Prosotas dubiosaare protected under Schedule II Part II, while Hasora vita and Baoris farri are categorized as Schedule IV.

It appears that the butterfly abundance increased from monsoon to winter while decreased in the summer and pre monsoon due to possibly with the unavailability of nector and the changes in temperature and humidity of the habitats concerned. Observations on the monthly variations of butterfly encounters indicates peak from September to December while a low from January to June. The present observations remain consistent with the records and views of the butterfly species in different parts of the world (Wilson et al 2004; Tiple et al 2006; Sodhi et al 2010; Tiple 2018). The number of species observed in the present study remained similar to the observations on the species in different parts of India bearing similar landscape patterns (Roy et al 2012; Harsh2014; Saikia 2014; Mukherjee et al 2015). As revealed through the present study, atleast 87 butterfly species are available in different numbers across the study area. Dominance of the butterflies of the family Nymphalidaeis similar to thatobserved in other parts of the world (Mutmainnah and Santosa 2019).

In parity with the species diversity observed in Isapur Wildlife Sanctuary of Maharashtra, India, it may be assumed that the butterflies carry out diverse functional roles for the sustenance of the ecosystems. The richness in composition in studyareawasalso species prominent in present investigation. The availability of the vegetation, seasonal wetlands and allied factors that render stability to the butterfly population and assemblages in landscapes are possibly important the contributors to the observed variations in the butterfly species observed in the present study. The observations on the diversity of the butterflies in the study area suggested that the conservation management is required to ensure sustenance of ecosystem services derived from the butterflies.

The present diversity study is confined to a limited area and selected habitats. There is, in the future, a chance of more species being reported because of few pockets and habitats in the studied area requiring more extensive exploration.

Acknowledgments

The author is thankful to Mr. Arvind Munde (Deputy Conservator of Forest, Pusad Forest Division) and Mr. Amol Thorat (Assistant Conservator of Forest, Pusad) and Mr. Sachin Sawant (Range Forest Officer, Shembalpimpri Range) for permission and erudite cooperation duringconduct of this study.

References

- 1. Basavarajappa S. 2006. Avifauna of agroecosystem of Maidan area of Karnataka. Zoo's Print Journal 21:2217-2219.
- Bonebrake TC, Ponisio C, Boggs CL, et al. 2010. More than just indicators: a review of tropical butterfly ecologyand conservation. Biological Conservation 143:1831-1841.
- 3. Ehrlich PR, Hanski I. 2004. On the wings of checkerspots: a model system for

population biology. Oxford: Oxford University Press. p. 408.

- 4. Evans WH. 1932. The identification of Indian butterflies. Bombay: Bombay Natural History Society. p. 464.
- 5. Gadgil M. 2002. Diversity- The Cornerstone of Life. N.Delhi: Vigyan Prasar Publication. p. 75
- 6. Hammer Ø, Harper DAT, Ryan PD. 2001. Paleontological statistics software package

for education and data analysis. Paleontologia Electronica 4:1-9.

- Haribal M. 1992. The butterflies of Sikkim Himalayas and their natural history. Gangtok: Sikkim Nature Conservation Foundation (SNCF). p. 217.
- Harsh S. 2014. Butterfly diversity of Indian institute of forest management, Bhopal, Madhya Pradesh, India. Journal of Insects 2014:1-4.
- Joshi PS, Tantarpale VT. 2016. Diversity of Saurian fauna in the Buldhana district, Maharashtra, India. Journal of Asia-Pacific Biodiversity 9: 306-311
- Joshi PS. 2014. Diversity and population dynamics of ophidian fauna from Buldhana District, Maharashtra, India. A thesis submitted to S.G.B. Amravati (India): Amravati University. pp. 1-260.
- Kehimkar I. 2008. The book of Indian butterflies. Mumbai: Bombay Natural History Society and Oxford University Press. p. 497.
- Kinnear PR, Gray CD. 2000. SPSS for windows made simple. Release 10. Sussex. UK: Psychology Press. p. 432.
- 13. Koh LP, Sodhi NS. 2004. Importance of reserves, fragments, and parks for butterfly conservation in a tropical urban landscape. Ecological Applications 14:1695-1708.
- Kunte K. 2000. Butterflies of Peninsular India. Hyderabad: Universities Press (India) Limited. p. 254.
- 15. Kuussaari M, Heliölä J, Luoto M, Pöyry J. 2007. Determinants of local species richness of diurnal Lepidoptera in boreal agricultural landscapes. Agriculture, Ecosystems and Environment 122:366-376.
- 16. Losey JE, Vaughan M. 2006. The economic value of ecological services provided by insects. BioScience 56:311-323.
- 17. Magurran AE. 1988. Ecological diversity and its measurement. London: Chapman and Hall. p. 192.
- Mukherjee S, Banerjee S, Saha G, Basu P, Aditya G. 2015. Butterfly diversity in Kolkata, India: An appraisal for conservation management. Journal of Asia-Pacific Biodiversity 8: 210-221.
- 19. Mutmainnah AR, Santosa Y.2019. Impact of oil palm plantation on the butterfly

diversity: a Case study in KGP & CNG, Ketapang, West Kalimantan. IOP Conf. Series: Earth and Environmental Science 336: 012032.

- Nimbalkar RK, Chandekar SK, Khunte SP. 2011. Butterfly diversity in relation to nectar food plants from Bhor Tahsil, Pune District, Maharashtra, India. Journal of Threatened Taxa 3:1601-1609.
- 21. Öckinger E, Dannestam Å, Smith HG. 2009. The importance of fragmentation and habitat quality of urban grasslands for butterfly diversity. Landscape and Urban Planning 93:31-37.
- 22. Öckinger E, Eriksson AK, Smith HG. 2006. Effects of grassland management, abandonment and restoration on butterflies and vascular plants. Biological Conservation 133:291-300.
- 23. Öckinger E, Smith HG. 2006. Landscape composition and habitat area affect butterfly species richness. Oecologia 149:526-534.
- 24. Pollard E, Yates TJ. 1993. Monitoring butterflies for ecology and conservation. London: Chapman and Hall. p. 292.
- 25. Pollard E. 1977. A method for assessing changes in the abundance of butterflies. Biological Conservation 12:115-134.
- 26. Roy US, Mukherjee M, Mukhopadhyay SK. 2012. Butterfly diversity and abundance with reference to habitat heterogeneity in and around Neora Valley National Park, West Bengal, India. Our Nature 10:53-60.
- Saikia MK. 2014. Diversity of tropical butterflies in urban altered forest at Gauhati University Campus, Jalukbari, Assam. Journal of Global Biosciences 3:452-463.
- Sodhi NS, Koh LP, Clements R, et al. 2010. Conserving Southeast Asian forest biodiversity in human-modified landscapes. Biological Conservation 143:2375-2384.
- 29. Stefanescu C, Herrando S, Páramo F. 2004. Butterfly species richness in the northwest Mediterranean Basin: the role of natural and human-induced factors. Journal of Biogeography 31:905-915.
- 30. Thomas JA. 2005. Monitoring change in the abundance and distribution of insects using butterflies and other indicator groups.

Philosophical Transactions of the Royal Society B 360:339-357.

- 31. Tiple A. 2018. Butterflies (Lepidoptera Rhopalocera) of the Bor wildlife sanctuary, Wardha, Maharashtra, Central India. Biodiversity Journal 9: 171-180.
- 32. Tiple AD, Deshmukh VP, Dennis RLH. 2006. Factors influencing nectar plant resource visits by butterflies on a university campus: implications for conservation. Nota Lepidopteralogica 28:213-224.
- 33. Watt WB, Boggs CL. 2003. Synthesis: butterflies as model systems in ecology and evolutiondpresent and future. In: Boggs CL, Watt WB, Ehrlich PR, editors. Butterflies: ecology and evolution taking flight. Chicago: The University of Chicago Press. pp. 603e613.
- Whitaker R, Captain Aa. 2008. Snakes of India. The Field Guide. 2nd edition India: Draco Books. p. 385.

- Wilson EO. 1997. Introduction. In: Reaka-Kudla ML, Wilson DE, Wilson EO, editors. Biodiversity II. Washington, D.C: Henry Press. pp. 1-3.
- Wilson RJ, Thomas CD, Fox R, et al. 2004. Spatial patterns in species distributions reveal biodiversity change. Nature 432:393-396.
- 37. Wynter-Blyth MA. 1957. Butterflies of the Indian region. Mumbai: Bombay Natural History Society. 523 p.
- 38. Yavatmal Gazetteer. 2019. Databaseof Buldhana District redirected from official website of Buldhana District, Maharashtra, India. Available at: www.yavtmal.nic.in [Date accessed: 01 January 2019].
- 39. Zar JH. 1999. Biostatistical analysis. 4th ed. New Delhi (Indian Branch): Pearson Education (Singapore) Pte. Ltd.. p. 667.