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________________________________________________________________________________ 

ABSTRACT 

Image registration between different imaging modalities (e.g. CT vs MRI, MR vs ultrasound, bright-field vs 

fluorescence microscopy) is a central problem in biomedical imaging. Due to differences in contrast, noise, 

appearance and sometimes spatial distortions, conventional intensity‐ or feature‐based registration methods 

often struggle in cross-modality settings. Contrastive learning—originally developed for representation 

learning—offers a promising route to learn modality-agnostic features or representations that capture 

shared anatomical or structural information. In this paper, we review and propose methods by which 

contrastive learning can be effectively applied for cross-modality image registration. We present a general 

framework, discuss recent advances, identify challenges, and suggest future directions. We also propose a 

hypothetical method combining anatomy-aware contrastive loss, region masking, and cross-modal attention 

to improve registration accuracy on typical biomedical datasets. 
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1. Introduction 

Image registration involves aligning two or 

more images so that corresponding anatomical 

or structural points (e.g. organs, tissues) match 

geometrically. In biomedical imaging, 

cross-modality registration is particularly 

important: 

 Combining information from different 

modalities (e.g., CT for bone structure, 

MRI for soft tissue, ultrasound for real‐time 

imaging). 

 Multimodal longitudinal studies, fusion of 

histology with in vivo imaging, 

image-guided therapy and surgical 

navigation. 

However, cross-modality registration is 

difficult because: 

Appearance differences: Intensities in CT vs 

MRI are not directly comparable; texture, 

shading, and contrast vary widely. 

Noise, artifacts and resolution mismatches. 

Lack of a shared intensity similarity metric. 

Many classic registration algorithms depend on 

e.g. mutual information or other metrics 

designed for cross-modality similarity — but 

these may fail when structures are subtle or 

noise is high. 

Contrastive learning has emerged in machine 

learning as a way to learn representations by 

contrasting “positive pairs” (similar examples) 

with “negative pairs” (dissimilar ones). In 

cross-modality registration, the idea is to learn 

representations so that images (or 

patches/features) from different modalities that 

correspond anatomically map to similar feature 

vectors, while non-corresponding ones map 

apart. 

2. Background 

Image registration 

 Rigid vs deformable registration: Rigid 

(translations, rotations) sufficient in some 

cases; deformable needed when tissues 

deform. 

 Monomodal vs multimodal registration: 

Monomodal (same imaging modality) 

easier, since intensity relationships are 

simpler; cross-modality introduces 

challenges. 

 Similarity metrics used in classical 

registration: sum of squared differences 

(SSD), cross-correlation, mutual 

information, normalized mutual 

information, etc. 

Contrastive Learning 

 Basic contrastive loss: Given (x, x⁺) 

positive pair and negatives x⁻, encouraging 

representation of x to be closer to x⁺ and 

farther from negatives. Examples: InfoNCE 

loss. 

761-765 



Vidyabharati International Interdisciplinary Research Journal 12(1)                                ISSN 2319-4979 

 

March 2021                                                                    762                                                          www.viirj.org 

 Self-supervised contrastive learning: 

Using data augmentations to generate 

positives, large amounts of unlabeled data. 

 Contrastive patch or spatial contrastive 

learning: Instead of whole image, 

matching patches (spatial correspondence) 

which is especially relevant in registration. 

Prior work combining cross-modality 

registration and contrastive learning 

Some representative works: 

 CoMIR (Contrastive Multimodal Image 

Representation) learns shared dense image 

representations for two modalities via 

contrastive loss (InfoNCE), then applies 

monomodal registration methods on these 

representations.  

 Cross-modal attention with contrastive 

pre-training: For example, MR–TRUS 

registration using cross-modal attention, 

where contrastive pretraining helps features 

become modality‐invariant before further 

training for spatial alignment.  

 Spatial-aware contrastive learning for 

CT-MRI registration: Using contrastive 

loss plus reconstruction loss and region 

masks to encourage both spatial 

correspondence and distinctive 

representation.  

 CBCRnet: Contrast-Reconstruction tasks 

guided pretraining for modal-independent 

features, bidirectional cross-modal 

attention.  

3. A General Framework for Contrastive 

Learning in Cross-Modality Registration 

Here we propose a unified framework, 

integrating insights from prior work, for 

applying contrastive learning to cross-modality 

image registration. 

Data Preparation 

 Paired images: If possible, use images 

from different modalities that are already 

approximately aligned or correspond to the 

same subject (even if not perfectly). 

 Unpaired images: If true pairs are 

unavailable, synthetic pairing, or weak 

pairing (e.g. same organ region, same 

patient, approximate alignment) can be 

used. 

 Patch extraction: Extract patches from 

corresponding locations for positive pairs; 

non-corresponding patches serve as 

negatives. 

Network Architecture 

 Two (or more) encoders, one per modality, 

or a shared encoder with adaptation 

modules. 

 Cross-modal attention blocks to allow the 

model to explicitly learn spatial 

correspondences between modalities. 

 Optional decoders if one wants to 

reconstruct images, or produce registration 

transformations (rigid / deformable). 

Loss Functions 

 Contrastive loss (e.g. InfoNCE): On 

representations extracted from 

corresponding patches/images from 

different modalities. 

 Anatomy-aware or structure-aware 

contrastive loss: Encourage alignment of 

anatomical structures; can use masks or 

segmentation annotations if available. 

 Reconstruction or translation losses: In 

some designs, to ensure features preserve 

shape / structure across translation. 

 Regularization losses: Spatial smoothness, 

deformation regularization for deformable 

registration, etc. 

Training Strategy 

 Pretraining: Use contrastive learning first 

to learn modality-invariant or shared 

structural features. 

 Fine-tuning: Then train registration 

network (rigid/deformable) using either 

supervised (if ground truth deformations 

available) or unsupervised alignment, 

possibly using feature similarity in learned 

representation space. 

Evaluation 

 Standard registration metrics: Dice 

similarity coefficient (DSC), target 

registration error (TRE), Hausdorff 

distance, mean surface distance, etc. 

 Visual inspection of overlays, contours. 

 Testing on diverse modalities (e.g. CT/MR, 

MR/US, microscopy modalities). 

 Ablation studies: effect of different losses, 

attention modules, patch sizes, etc. 
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4. Proposed Method 

(Hypothetical/Combined Approach) 

This section outlines a hypothetical 

improvement combining several techniques to 

address common challenges. 

Method Overview 

We call the method Anatomy-Aware 

Cross-Modal Contrastive Registration 

(ACCR). 

The components: 

a. Dual Encoders: One encoder for each 

modality. Use of shared weights in early 

layers to encourage shared structure 

features; modality-specific layers later. 

b. Cross-Modal Attention Module: After 

encoding, cross-attention layers align 

feature maps across modalities to capture 

spatial correspondences. 

c. Anatomy-Aware Contrastive Loss: 

 Use anatomical masks (if available) to 

generate positive pairs across 

modalities only in corresponding 

anatomical regions; ensure negatives 

are from other regions. 

 Employ patch-wise contrastive loss: 

matching patches that correspond to 

same location / anatomical region. 

d. Structure Self-Similarity Loss: For each 

image, compute self-similarity of local 

neighborhoods (e.g. for a patch, the 

similarity with neighboring patches), and 

enforce that the representation preserves 

structural self-similarity across modalities. 

e. Deformable Registration Module: On top 

of representations, a registration module 

predicts transformation (rigid or 

deformable) that aligns the floating image 

to the fixed. 

Training Pipeline 

 Stage 1: Pretrain encoders + attention + 

contrastive and self-similarity losses 

using paired or weakly paired images. 

 Stage 2: Introduce registration module; 

jointly train with representation fixed or 

finetuned. 

 Stage 3: If annotations available, 

optionally fine-tune using supervised 

losses. 

 

5. Challenges 

Even with this framework, there are several 

challenges: 

 Availability of paired data: Many datasets 

do not have perfectly aligned 

cross-modality images. Weak supervision 

or synthetic pairing may help, but may 

introduce errors. 

 Scale and resolution differences: 

Modalities may have different spatial 

resolutions, field-of-view, or distortions. 

 Anatomical deformations: Nonlinear 

deformations (e.g. breathing motion, tissue 

deformation) complicate matching. 

 Inter-modality inconsistencies: Some 

structures visible in one modality may not 

be visible in another; appearance may differ 

extremely. 

 Negative sampling in contrastive learning: 

choosing negatives that are informative is 

critical; false negatives (i.e. patches that 

look different but correspond anatomically) 

can degrade learning. 

 Computational cost: Patch-wise 

contrastive learning, deformable 

registration, large 3D volumes — demands 

on memory and compute are high. 

6. Experimental Design 

To validate ACCR, one might design 

experiments as follows: 

Datasets: 

 MR-CT scans from abdominal imaging. 

 MR-Ultrasound scans (e.g. prostate). 

 Microscopy modalities (bright-field vs 

fluorescence / SHG etc). 

Baseline Methods: 

 Classical registration (mutual 

information, cross correlation). 

 CoMIR. 

 Cross-modal attention methods. 

 CBCRnet. 

Evaluation Metrics: 

 Dice coefficient on segmented structures. 

 TRE measured on landmark points. 

 Hausdorff distance. 

 Run time and memory usage. 
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Ablation Studies: 

 With vs without attention module. 

 With vs without structure self-similarity 

loss. 

 Different patch sizes; different negative 

sampling strategies. 

Qualitative Analysis: 

 Overlayed images before/after registration. 

 Heatmaps of attention / feature 

correspondence. 

 

 

9. Conclusion 

Contrastive learning offers a powerful tool for 

bridging modality gaps in biomedical image 

registration by learning shared, structure-aware 

feature representations. When combined with 

attention mechanisms, anatomical awareness, 

and well-designed loss functions, such methods 

promise to substantially improve registration 

performance over classical or purely 

intensity-based methods. Continued progress 

will depend on better data (especially aligned 

or weakly aligned cross-modality data), clever 

representation learning, and scalable 

architectures. 
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