
Vidyabharati International Interdisciplinary Research Journal 11(2) ISSN 2319-4979

Dec. 2020 255 www.viirj.org

 A COMPARATIVE STUDY OF MACHINE LEARNING FRAMEWORK
TENSOR FLOW (TF) AND PYTORCH

S. Singh1 and E.B. Khedkar2
Dr D Y Patil School of MCA, Pune MS, India

Dr. D.Y. Patil School of Management, Pune MS, India
Sapan23k@gmail.com1, ebkhedil.comkar@gmail.com2

ABSTRACT

As a part of defining a solutioning approach, we were required to select the best Deep Learning framework to suit a
particular requirement. We considered the following factors; ease of implementation, shorter implementation time,
ease of understanding, larger developer community, support, advanced feature list. Researcher has done competitive
study of PyTorch with TF V 1.0 in terms of Model Build, Session and Variable Scoping, Symbolic and Derivative links,
Debugging, Data Pipeline, Distributed Computing. Once the frameworks were identified, comparison of the framework
(point-to-point, feature to feature) across versions was the next step. Future road map plans for both the frameworks
were taken into account before taking a decision. Apart from the above comparison between frameworks, we also
considered doing a comparison between multiple versions of the same framework to ensure the right selection of the
best framework.

__

Keywords: Machine Learning framework, Tensor Flow (TF) and Pytorch.

Introduction

Deep Learning (DL) remains the hottest
technology in data science. It has achieved
exceptional momentum compared to any other
technology in Data Science. Technologies that
are based on Deep Learning has secured the
place quite up in the ladder. It plays an
important role in achieving the AI dreams, for
firms, generating results that are superior to the
state of the art in tricky and critical areas such
as NLP and image (Computer Vision)
processing.

Each Deep Learning framework has its unique
characteristics, which is implemented to cater
different purposes. They differ in the
algorithms, quality and support in the
implementation. Top players in this space
includes PyTorch,Tensor Flow (TF), Microsoft
Cognitive Toolkit/CNTKCaffe,Chainer,Keras,
MXNet, and DeepLearning. These frameworks
have evolved over a period with its unique
capabilities.

Our initial approach for the study was to carry
a high-level assessment of the available
frameworks and shortlist the top two
frameworks, giving consideration to the main
areas that are listed below:

 Availability of pre-trained models
 Licensing model

 Connected to a research university or
academia

 Benchmarks: Speed of inference, Speed of
training

 Known large-scale deployments by notable
companies

 Availability of the dedicated cloud
optimized for a framework

 Engineering productivity
 Availability of debugging tools
 Compatibility (supported languages to

write applications)
 Learning : Quality of the official

documentation
 Open-source
 Supported Deep Learning algorithmic

families and models
 Supported operating systems and platforms
 Computation Availability of CPU version

optimized by Intel, Support for multiple
CPUs, Horizontal scalability

The frameworks that were identified through
the first level assessment were: Tensor Flow
(TF) and Pytorch.

Research Methodology

Researcher has used experimental method.
Comparison was done in multiple steps/stages.
To make sure that our study is as
comprehensive as possible, we did go through

255-258

Vidyabharati International Interdisciplinary Research Journal 11(2) ISSN 2319-4979

Dec. 2020 256 www.viirj.org

multiple experiments (Multiple Approaches)
using multiple datasets with enough variance
and volume from different areas of Deep
Learning (Computer Vision, NLP, etc.) and
measure the performance of the frameworks.
The same has been recorded in detail as part of
this research Paper for reference.

 Feature wise comparison in detail,
Comments & Observations.

 TF1.X to TF2.0 Conversion Experiment
with Observations.

Feature wise comparison in detail: Comments
and Observations The following areas were
considered to compare. TF 1.0, TF 2.0 &
PyTorch.

 Model Build
 Session and Variable Scoping
 Symbolic and Derivative links
 Debugging
 Data Pipeline
 Distributed Computing
 Model deployment

Comparison: Tenser Flow and Pytorch

The final qualitative and quantitative study and comparison: TF 1.0, TF 2.0 and PyTorch.

Figure 1: Qualitative and quantitative study and comparison: TF 1.0, TF 2.0 and PyTorch

Overall observation on the comparison
summary – TF1.13, TF2.0, Pytorch

 Keras - TF 2.0, Deep Learning framework
has an upper hand over a simple TF i.e. TF
1.0 and Pytorch. Being a high level
implementation framework, it provides the
following advantages:

 Rapid prototyping
 Speed of execution
 Easy debugging
 Multiple Back-end support.

 TF 2.0 carries the advantage of having both
TF 1.0’s low-level implementation and
Kera’s high-level implementation. This
factor clearly makes Tensor flow 2.0 to be
in the advantageous position.

 Compared to its nearest rival, this version
reduces the gap with an improved user
experience and features

 TF2.0 provides multiple levels of
abstraction, which can suit any type of
developer. For example: Like a researcher
who requires a very low level API or a
standard ML practitioner who expects a
high level API to build and experiment on
models as quickly as possible.

TF1.X to TF2.0 Conversion Experiment

As a first step towards understanding the
complexity while migrating from the older
version of Tensorflow i.e. 1.13 to the latest
version 2.0, we identified solutions which were
implemented using TF 1.0 (Computer Vison &
NLP based) and efforts were made to migrate

Vidyabharati International Interdisciplinary Research Journal 11(2) ISSN 2319-4979

Dec. 2020 257 www.viirj.org

that to TF 2.0. This experiment not only played
a significant role in helping us in understanding
the new set of features in TF 2.0 but it also
helped us in analyzing the process, effort and
complexities involved in migrating from one
version to another. This experiment provided
us clear insight on the added enhancement in
TF 2.0. To achieve this, we followed the steps
outlined in the TF2.0 conversion documents.
Overall observation from the experiment –
TF1.X to TF2.0 Conversion

 Though upgrade script is easy to execute,
the script makes only high-level changes to
the old version of code. The remaining
functional changes like replacing
tf.Session.run calls, changing low-level
variable etc. need to be performed
manually.

 TF2 documentation gives out details at a
very granular level. Most technical users
understand only high-level information on
supporting packages. This would make it
difficult to rectify the issues faced when
executing upgraded code.

 Though information about the code
changes are provided, the exact module of
code changes required in supporting
packages used are not provided.

 For very old versions of tensorflow code,
as per documentation, at least two upgrade
steps are required. It cannot be directly
converted to TF2.0

 TF2.0 is better than TF1.x when creating a
new module since it uses less number of
packages; the new packages used are also
more efficient compared to old ones. TF2.0
also reduces major chunk of codes to
abstract versions of it. However,
conversion from TF1.x.

TF2.0 vs Pytorch Comparison

Overall observation from the experiment –
TF2.0 – Pytorch Comparison
 Speed of execution: TF 1.x requires a

computational graph to be built followed
by creation of a Tensorflow session and
finally running the session. This improves
TF’s speed of execution since the
computational graph makes it possible for
TF 1.x to execute extremely efficient
through an interpreted set of instructions (if

using Python). Pytorch, on the other hand,
interprets instructions as it goes along,
which has cost in terms of execution speed
but is more flexible if one needs to modify
the NN algorithm during execution,
Whereas TF 1.x requires the entire
computational graph to be recreated and a
new session instantiated and run which
makes it programmatically inefficient and
complicated. TF 2.0 combines the best of
both – the ability to create the
computational graph for improved speed if
needed, and the new eager execution mode
allows instructions to be executed as they
are encountered for better runtime
flexibility.

 Ease of programming: Earlier Pytorch 1.0
had an ease-of-programming advantage
over Tensorflow 1.x. it executed
instructions right after they were
encountered, which was intuitive for
developers to understand. Tensorflow 2.0’s
Eager Execution mode has made a huge
improvement in allowing instructions to be
executed instantly without the requirement
of creating a full computational graph first,
and makes TF 2.0 superior to TF 1.x in this
regard.

 Automatic utilization of all GPUs: Pytorch
has a capability called Data Parallelism that
allows any AI model to automatically run
on the available GPUs in the machine. In
Tensorflow 1.x, scaling the model across
multiple GPUs requires a procedure to be
followed, which may end up in mis-
configuration if not handled carefully. . In
TF 2.0, it is easier to scale the model to
multiple GPUs automatically.

 Flexibility of API: Both TF 1.x and 2.0
both offer a level of flexibility in
implementation that is not matched by
Pytorch. TF 1.x as well as 2.0 have a rich
API set, providing programmers with
various choices for creating sophisticated
neural networks.

 Learning Curve of API: The high flexibility
of Tensorflow comes at a cost. Having
worked with both Pytorch as well as TF 1.x
and 2.0 alpha, Pytorch is still ahead of TF
in terms of intuitive understanding and ease
of use. The rich API of TF 1.x as well as

Vidyabharati International Interdisciplinary Research Journal 11(2) ISSN 2319-4979

Dec. 2020 258 www.viirj.org

2.0 gives programmers various choices for
accomplishing the same objective, which
makes it harder for the programmer to
decide on the best approach to go with.
With Pytorch the library and API calls are
fewer and simpler to understand. In TF’s
API (whether 1.x or 2.0), it is rather easy to
get stuck, debugging an invalid parameter
that was set, or to use the wrong API
function, whereas with Pytorch there are
fewer parameters in the function calls and
the function names are more intuitive to
understand.

 Debugging: To add to the above comment,
Pytorch still appears easier to debug in
Jupyter Notebook (or Pycharm, VS Code,
etc.) than Tensorflow 1.x since one can
process one statement (instruction) at a

time and observe how the variables
advance. However, with TF 2.0’s eager
execution, debugging it in Jupyter
Notebook is now easier and more intuitive.

Conclusion

The overall summary of the above study
concludes that, though PyTorch had been
leading the race in comparison with TF V 1.0
in terms of Model Build, Session and Variable
Scoping, Symbolic and Derivative links,
Debugging, Data Pipeline, Distributed
Computing, TF 2.0 (Alpha Version) is clearly
ahead with Keras incorporation. TF 2.0 is more
flexible and user friendly reducing the
complexity and consumption of time and
efforts. The outcome of the study recommends
Tensor Flow framework for Deep learning.

References

1. Bansal A, Harit G, Roy S D (2014). Table
Extraction from Document Images using
Fixed Point Model.
http://dx.doi.org/10.1145/2683483.268355

2. Gao, S., Wang, Z., Chia, L.-T., Tsang, I.
W.-H. (2010). Automatic image tagging via
category label and web data Proceedings of
the International Conference on
Multimedia -MM ’10

3. Park J and Lee G (2008).A Robust
Algorithm for Text region Detection In
Natural scene Images. can.j. elect. comput.
eng., vol.33, no. ¾, summer/fall 2008

4. Pise, A., & Ruikar, S. D. (2014). Text
Detection and Recognition in Natural
Scene Images. In Communications and
Signal Processing (ICCSP), 2014
International Conference on (pp. 1068-
1072). IEEE.

5. Ruiz M.E., Srinivasan P. (2008), Automatic
Text Categorization Using Neural
Networks. School of Library and
Information Science, The University of
Iowa. Advances in Classification Research.
VIII. 59-66.

6. Verma R and Ali J. (2012). “A-Survey of
Feature Extraction and Classification
techniques in OCR Systems.” Proceeding
of the international journal of Computer
Application and Information Technology,
Volume 1, Issue 3, November 2012.

7. Wang, G., Hoiem, D., Forsyth, D. (2009).
Building text features for object image
classification. 2009 IEEE Conference on
Computer Vision and Pattern Recognition.

8. Yue A (2018). Automated Receipt Image,
Identification, Cropping and Parsing.
Princeton University.0.

