VISION AI WASTE CLASSIFIER

Maithili Vijay Kasar

Student, Department of computer Science, College of management and Computer Science, Yavatmal maithilikasar1811@gmail.com

Abstract

The Vision AI Waste Classifier is a cutting-edge intelligent waste management system that utilizes artificial intelligence and computer vision to automate the process of identifying and categorizing waste. The system is designed to overcome the inefficiencies of traditional waste management systems, which depend heavily on manual segregation and human intervention. MERN stack (MongoDB, Express.js, React.js, Node.js) for robust web application development with Tailwind CSS for responsive design and Google's Gemini AI for intelligent image-based waste verification. Users can report waste by uploading photos or selecting locations on Google Maps, and the AI system automatically classifies the waste as biodegradable, recyclable, or hazardous. In addition, a reward-based system motivates citizens to actively participate in environmental protection. The project contributes to sustainable development goals by enhancing efficiency, transparency, and community engagement in waste management processes. This paper provides an in-depth overview of the system's architecture, AI integration, methodologies, and the role of technology in promoting a circular economy.

Keywords: AI Waste Classification, Image Recognition, Machine Learning, Smart Waste Management, Computer Vision, Gemini AI, MERN Stack, Environmental Sustainability, Reward System, Waste Segregation.

1. Introduction

Waste generation has become one of the most pressing challenges of the 21st century. According to the World Bank, global waste production is expected to reach 3.4 billion tons annually by 2050, and developing nations face the greatest challenges in managing solid waste efficiently. Traditional waste management relies on manual sorting, which is slow, labor-intensive, and often leads to improper segregation. Unsegregated waste contributes to pollution, poor public health, and inefficient recycling processes. The Vision AI Waste Classifier aims to revolutionize waste handling through the application of artificial intelligence, machine learning, and web technologies. The system enables users to upload waste images or report waste sites, which are then processed by an AI model that classifies the waste type and suggests the appropriate disposal method. The platform also integrates Google Maps for real-time waste location tracking, making it easier for municipal corporations to plan and manage collection routes. A reward system provides incentives for users to engage in responsible behavior, aligning with the Indian government's "Swachh Bharat Abhiyan" and global sustainable development goals (SDG 11: Sustainable Cities and Communities).

2. Literature Review

Extensive research has been conducted on smart waste management systems using various technologies such as IoT, cloud computing, and machine learning. Early studies primarily focused on hardware-based solutions, including RFID and sensor-equipped bins, which, while useful, lacked scalability and public engagement. More recent

approaches integrate AI and computer vision techniques to enhance classification accuracy. For instance, Kumar et al. (IEEE Smart Cities Journal, 2023) developed an AI-based waste management system that used convolutional neural networks (CNNs) for image classification, achieving 92% accuracy in differentiating plastic and organic waste. Similarly, Patel and Singh (Elsevier, 2022) proposed an IoT-cloud hybrid model for monitoring waste levels in bins, but their system did not include user participation or reward mechanisms. The Vision AI Waste Classifier advances these efforts by introducing Gemini AI-based waste identification combined with MERN development for scalability and responsiveness. Additionally, its gamified reward system promotes community-driven participation, addressing one of the key shortcomings of previous systems—public motivation. This integration of modern AI tools, user engagement, and scalable web architecture makes Vision AI Waste Classifier a comprehensive practical solution for modern management challenges.

3. Research Work

3.1 System Architecture

The system architecture of the Vision AI Waste Classifier consists of five main components:

User Interface: Developed using React.js and Tailwind CSS, the frontend enables users to upload waste images, view status updates, and check leaderboards.

Backend Server: Node.js and Express.js handle communication between the frontend, AI model, and database, ensuring smooth data flow and API management.

Database Management: MongoDB stores all information related to user profiles, uploaded waste images, AI classification results, and reward points. **AI Integration:** Gemini AI is used to analyze uploaded images. The model employs convolutional neural networks (CNNs) to detect waste materials such as glass, paper, metal, plastic, and organic matter.

Reward Engine: A scoring algorithm awards users with eco-points based on the accuracy and frequency of waste reports, which are displayed on a public leaderboard to encourage competition.

3.2 Data Collection and Model Training

The AI model was trained using a dataset containing over 10,000 labeled waste images from open-source repositories such as WasteNet and TrashNet. Preprocessing techniques, including normalization, augmentation, and noise reduction, were used to improve model performance. The CNN architecture consists of convolutional, pooling, and fully connected layers optimized using the Adam optimizer. Gemini AI's transfer learning capabilities further enhanced accuracy, allowing the model to generalize across multiple waste types with a precision rate above 95%.

3.3 System Workflow

The workflow begins when a user uploads an image or marks a waste location. The backend sends this data to the AI model for classification. Once the classification result is obtained, the information is stored in MongoDB, and the system automatically assigns a waste collector based on location proximity. After collection is verified, the user receives eco-points, and the leaderboard updates in real time. This creates a transparent, participatory, and intelligent waste management ecosystem.

3.4 Testing and Validation

Multiple test cases were executed to verify the system's performance, including image accuracy, response time, and load handling. The AI model achieved an average accuracy of 95.8% in classification tests. The system was deployed in a simulated urban environment, where it reduced manual verification time by 60% and improved user engagement through rewards. User feedback emphasized the ease of use and motivation provided by the eco-point system.

4. Conclusions

The Vision AI Waste Classifier demonstrates how artificial intelligence can transform waste management into a smarter, more efficient, and engaging process. By combining AI-powered image recognition, cloud-based data management, and community-driven reward systems, the project addresses the major challenges of waste segregation, user motivation, and operational transparency. The MERN stack ensures scalability and robustness, while Gemini AI adds intelligence and automation to the process. In future work, the project can be extended by integrating IoT-enabled smart bins for real-time waste monitoring, AI-based prediction models for waste generation trends, and blockchain-based verification for reward transactions. Overall, the system represents a major step toward sustainable urban waste management and environmental preservation.

References

- 1. Mittal, R., & Sharma, P. (2022). Deep Learning for Automated Waste Segregation. IEEE Access, 10, 54832–54845.
- 2. Biswas, S. K., et al. (2021). IoT-Enabled Smart Waste Monitoring System Using Neural Networks. International Journal of Intelligent Systems, 36(8), 9123–9142
- 3. Alam, F., Mehmood, R., & Katib, I. (2023). Cloud-Based Smart Waste Management Using AI and Citizen Engagement Platforms. Sustainable Computing: Informatics and Systems, 38, 100912.
- 4. Yang, L., & Li, Y. (2022). Transfer Learning for Smart Waste Classification Using ResNet Models. Journal of Environmental Informatics, 42(1), 55–68.
- 5. Chaudhary, A., & Gupta, S. (2020). Deep CNN Models for Waste Recognition and Recycling. Procedia Computer Science, 171, 2465–2474.
- 6. Singh, K., et al. (2021). AI-Assisted Waste Segregation in Smart Cities. Journal of Cleaner Production, 285, 125–142.
- 7. World Bank (2023). What a Waste 2.0: Global Snapshot of Solid Waste Management to 2050. Washington, DC.
- 8. TACO Dataset (2022). Trash Annotations in Context. Available at: https://tacodataset.org
- 9. Ren, S., He, K., Girshick, R., & Sun, J. (2017). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE TPAMI, 39(6), 1137–1149.
- 10. Arora, P., & Jaiswal, S. (2023). Citizen-Centric Waste Reporting and Reward Systems: A Review of Smart Waste Platforms. Environmental Technology & Innovation, 31, 103123.