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Abstract 
Artificial Intelligence (AI) is reshaping robotics by moving beyond rule-based programming toward 

adaptive and embodied intelligence. Foundation models (2020–2025) play a central role, enabling robots to 

integrate perception, reasoning, and action across varied tasks and environments. Studies emphasize their 

strengths in zero-shot generalization, multimodal learning, and human–robot interaction, alongside 

challenges in data efficiency, robustness, safety, and ethics. Practical advances, including RT-1 for large-

scale control, vision–language models for imitation learning, RoboCat for continual self-improvement, and 

RobotxR1 for reinforcement-driven reasoning, illustrate their potential to enhance autonomy and 

adaptability. Complementary work in deep reinforcement learning further supports real-time navigation and 

control. Overall, foundation models provide a transformative pathway toward scalable, flexible, and 

intelligent robotic systems, though significant technical and ethical barriers remain. In this paper, we 

focused on the role of foundation models in transforming robotics. 

Keywords:  Artificial Intelligence (AI), Robotics, Models, Deep Learning, Autonomy, 

Generalization, Adaptability. 

 

 

1. Introduction: 

Artificial Intelligence (AI) is rapidly transforming 

robotics, moving from rule-based machines to 

adaptive, general-purpose, and autonomous agents. 

While traditional robotics was limited by rigid 

programming, the rise of foundation models (2020–

2025) has enabled robots to perceive, reason, and 

act with far greater flexibility. These advances 

bridge the gap between computer vision–based 

perception and autonomous decision-making, 

allowing robots to adapt in dynamic, unstructured 

environments. Surveys highlight the central role of 

foundation models in robotic intelligence. For 

example, some studies emphasize that pre-trained 

large-scale models can act as general backbones for 

perception and control, reducing dependence on 

narrow, task-specific methods [1]. Others review 

their applications in manipulation, navigation, and 

human-robot interaction, while also noting 

challenges such as data efficiency, robustness, and 

safety [2] [3]. 

Practical breakthroughs further show their 

potential. RT-1 introduced large-scale control using 

transformer architectures [4], while vision-language 

foundation models proved effective for imitation 

learning from demonstrations [5]. Similarly, vision-

language-action flow models enable generalization 

across tasks by integrating perception, language, 

and motor control [6]. Self-improving and 

reinforcement-driven approaches extend autonomy 

even further. RoboCat verified continual self-

improvement through reskilling on new data [7], 

while RobotxR1 combined large language models 

with strengthening learning for closed-loop 

reasoning [8].  

At the task level, deep RL for vision-based obstacle 

avoidance shows how robots can achieve real-time 

adaptive navigation [9]. Together, these works 

suggest that integrating vision, language, and action 

through foundation models is accelerating the move 

toward embodied AI robots that learn, perceive, 

and act in ways similar to human cognition [10].

 

 



Vidyabharati International Interdisciplinary Research Journal                                                             ISSN 2319-4979 

 

National Conference on Intelligent Future: Multidisciplinary Approaches to Artificial Intelligence  

[IFMAAI-2025] 30 August, 2025                                      Page | 186   

 
                    Fig. 1 from AI to Embodied AI 

 

 

2. Literature review: 

Hu et al. (2023) provided one of the most 

comprehensive examinations of the role of 

foundation models in advancing general-purpose 

robotics, situating robotics at the intersection of 

machine learning, computer vision, natural 

language processing, and control. The authors 

conduct both a survey and a meta-analysis, offering 

an in-depth review of how large-scale pre trained 

models, particularly vision-language and 

multimodal transformers, are increasingly 

leveraged to enhance perception, planning, and 

action in robotic systems. By synthesizing existing 

research, they identify the strengths of foundation 

models in enabling zero-shot generalization, 

multimodal reasoning, and embodied intelligence, 

while also pointing to persistent challenges such as 

data efficiency, robustness in dynamic 

environments, and alignment between learned 

representations and real-world tasks. Their meta-

analysis underscores the transformative potential of 

foundation models for creating scalable robotic 

systems capable of autonomous and adaptive 

behaviour across varied domains, thereby 

positioning such models as a critical step toward 

embodied artificial intelligence. This work is 

widely regarded as a landmark contribution in 

establishing the conceptual and methodological 

foundations for general-purpose robotics research. 

[1] 

Firoozi et al. (2023) present a systematic 

exploration of the applications, challenges, and 

future directions of foundation models in robotics, 

positioning them as a transformative paradigm for 

advancing robot autonomy and adaptability. The 

paper emphasizes how large-scale pre trained 

models, particularly those integrating vision, 

language, and action modalities, can significantly 

enhance robotic perception, planning, 

manipulation, and human-robot interaction. Unlike 

traditional task-specific methods, foundation 

models enable robots to generalize across tasks, 

environments, and sensory inputs, making them 

more scalable and versatile. However, the authors 

also highlight critical limitations, including the high 

computational and data requirements, safety and 

reliability concerns in real-world deployments, and 

the pressing need for ethical frameworks to govern 

their use. Their forward-looking perspective 

underscores the importance of interdisciplinary 

research to overcome these barriers, while pointing 

to opportunities in leveraging foundation models 

for embodied intelligence and human centred 

robotics. This work thus serves as both a roadmap 
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and a cautionary note for integrating foundation 

models into the next generation of robotic systems. 

[2] 

Xu and Zhao (2023) provide a focused examination 

of best practices in applying foundation models to 

robotics, emphasizing methodological rigor and 

practical considerations for effective deployment. 

Their work highlights how the integration of large-

scale pre trained models into robotic systems 

requires careful handling of data collection, model 

fine-tuning, and domain adaptation to ensure robust 

generalization in real-world scenarios. They stress 

the importance of leveraging multimodal inputs—

such as vision, language, and sixth sense while 

maintaining efficiency through techniques like 

parameter-efficient training and modular 

architectures. Unlike broader surveys, this study 

adopts a prescriptive stance by outlining guidelines 

for aligning foundation model capabilities with 

robotics-specific tasks, thereby addressing 

challenges such as safety, interpretability, and 

hardware limitations. By systematizing lessons 

learned from recent advances, Xu and Zhao 

contribute a practice-oriented perspective that 

complements more theoretical or application-driven 

studies, offering researchers and practitioners a 

framework to bridge the gap between foundation 

model theory and embodied robotic intelligence. 

[3] 

Brohan et al. (2022) present RT-1, a robotics 

transformer model designed to unify robotic control 

through large-scale learning. The model leverages a 

transformer-based architecture trained on extensive 

real-world demonstrations, enabling strong 

generalization across tasks and instructions. The 

study highlights how scaling data and model 

capacity enhances performance in long-horizon and 

compositional tasks, emphasizing the role of 

natural language conditioning and multimodal 

integration. RT-1 demonstrates robustness and 

adaptability, marking a significant step toward 

generalist robotic agents and establishing a 

foundation for future advancements in real-world 

embodied intelligence. [4] 

Li et al. (2023) investigate the use of vision-

language foundation models (VLFMs) as robot 

imitators, focusing on their ability to generalize 

across tasks through multimodal learning. The 

study emphasizes how VLFMs leverage large-scale 

pre training to map visual and textual inputs into 

meaningful action representations, enhancing 

imitation learning efficiency. By aligning 

perception and instruction understanding, these 

models show promise in bridging the gap between 

human demonstrations and robotic execution. The 

work highlights their potential in enabling scalable, 

flexible, and adaptable robot learning while also 

addressing challenges such as grounding, 

robustness, and deployment in real-world settings. 

[5] 

Black et al. (2023) introduce π0: a vision-language-

action (VLA) flow model designed for general 

robot control, positioning it as a step toward unified 

embodied intelligence. The study emphasizes how 

π0 integrates multimodal data visual perception, 

natural language, and action flow to enable robots 

to interpret instructions and perform tasks in a more 

generalized manner. By aligning language with 

perception and control, the model aims to overcome 

limitations of task-specific approaches, offering a 

scalable pathway for robust real-world deployment. 

The work highlights its significance in advancing 

foundation models for robotics while identifying 

ongoing challenges in grounding, adaptability, and 

safe deployment. [6] 

Bousmalis et al. (2023) presented RoboCat, a self-

improving generalist agent for robotic management 

that forces the scaling properties of foundation 

models. The model is trained on diverse 

multimodal datasets and designed to adapt to new 

tasks with minimal additional data, thereby 

demonstrating strong generalization capabilities. A 

key contribution is its ability to self-improve 

through iterative data collection and fine-tuning, 

allowing the system to continually expand its skill 

set across a wide range of robotic manipulation 

tasks. This approach highlights the potential of 

combining large-scale pre training with 

autonomous adaptation, setting a precedent for 

more versatile and scalable robotic learning 

systems. [7] 

Boyle et al. (2023) introduce RobotxR1, a 

framework that integrates large language models 

(LLMs) with robotics through closed-loop 

reinforcement learning to enable embodied 

intelligence. Unlike traditional static prompt-based 

approaches, RobotxR1 emphasizes continuous 

feedback and iterative learning, allowing robots to 

refine decision-making and improve task 

performance dynamically. The study highlights the 

role of reinforcement signals in bridging high-level 

natural language understanding with low-level 

robotic control, thereby enhancing adaptability in 

real-world environments. This work underscores 

the growing importance of combining LLMs with 

reinforcement learning to achieve more 

autonomous, general-purpose robotic agents. [8] 

Wenzel et al. (2020) present a study on vision-

based obstacle avoidance in mobile robotics using 

deep reinforcement learning (DRL). Their work 

departs from reliance on handcrafted features or 

traditional path-planning methods by leveraging 
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raw visual input to train agents for navigation in 

complex environments. The research demonstrates 

how DRL enables robots to learn robust obstacle-

avoidance policies that generalize across dynamic 

and cluttered scenarios. By integrating deep 

learning with reinforcement-based decision-

making, the study highlights the potential of DRL 

to improve autonomy in mobile robots, particularly 

in environments where explicit modelling of 

obstacles is difficult or infeasible. [9] 

Xu et al. (2023) provide a comprehensive survey on 

the integration of foundation models into robotics, 

emphasizing their role in advancing embodied AI. 

The paper categorizes existing approaches based on 

perception, decision-making, and control, showing 

how foundation models can unify these 

traditionally separate components. The authors 

highlight the scalability and adaptability of such 

models, particularly in enabling robots to handle 

diverse tasks without extensive task-specific 

retraining. They also discuss key challenges, 

including high computational demands, the need 

for domain adaptation to physical environments, 

and safety concerns in deployment. Importantly, the 

study underscores the promise of foundation 

models in bridging the gap between simulation and 

real-world robotics, setting a research agenda for 

more general-purpose, intelligent, and embodied 

robotic systems. [10] 

 

3. Research Work: 

Foundation models are changing robotics by 

helping robots learn and adapt too many different 

tasks, inputs, and environments. Surveys 

[1][2][3][10] show that these models are strong in 

seeing, planning, and controlling actions, but also 

face challenges like needing lots of data, handling 

changes in the real world, staying safe, and 

following ethics. Key progress includes RT-1 for 

large-scale robot control [4], VLFMs for learning 

from human examples [5], π0: for linking vision, 

language, and actions [6], RoboCat as a self-

learning robot agent [7], and RobotxR1 that 

connects language models with reinforcement 

learning [8]. Research on deep reinforcement 

learning for avoiding obstacles [9] also adds 

support. Overall, these works show that foundation 

models can lead to smarter, more flexible, and more 

independent robots. 

 

4. Conclusion: 

Foundation models are transforming robotics by 

enabling robots to learn, adapt, and perform a wide 

range of tasks across different environments. 

Unlike traditional rule-based approaches, these 

models allow robots to combine perception, 

planning, and action in a more flexible and 

intelligent way. Recent developments such as large-

scale control systems, vision-language models, self-

improving agents, and reinforcement learning 

techniques have shown how robots can generalize 

skills, learn from demonstrations, and continuously 

improve their abilities. While challenges like data 

needs, robustness, safety, and ethical concerns 

remain, foundation models offer a promising 

pathway toward creating truly intelligent, 

autonomous, and adaptive robotic systems that can 

function effectively in real-world, dynamic 

situations. 
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