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Abstract 
This study focuses on the transient thermoelastic response of penny-shaped cracks embedded in an infinite 

solid exposed to combined thermal and mechanical loading. The governing equations of heat conduction and 

elasticity are formulated within the framework of thermoelasticity and solved using Laplace and Hankel 

transform techniques. From these solutions, stress intensity factors (SIFs) are evaluated to characterize crack 

behavior under dynamic conditions. The results enhance understanding of material performance under 

coupled thermo-mechanical effects and offer useful implications for fracture mechanics and advanced 

structural design. 

 

1. Introduction 

Crack propagation is a critical failure mode in 

materials subjected to thermal and mechanical 

loads. In particular, a penny-shaped crack (a 

circular crack) embedded in an infinite solid offers a 

classical model for studying fracture me- chanics 

due to its simplicity and relevance to real-world 

applications. Under- standing the behavior of such 

cracks under transient thermoelastic conditions is 

essential for predicting the failure of components in 

engineering structures, par- ticularly those exposed to 

varying thermal conditions. Penny-shaped cracks can 

be subjected to thermal loads that vary with time, 

causing thermal expansion or contraction, and 

mechanical loads that result from external forces. 

This study aims to develop a mathematical 

framework that models the transient behavior of 

such cracks under coupled thermal and mechanical 

stresses, with a focus on stress intensity factors 

(SIFs) which are crucial for predicting crack 

propagation. 

Thermoelasticity provides a framework to 

understand how temperature variations generate 

stresses in solids. The foundations were established 

by Green and Zerna (1954) and Boley and Weiner 

(1960), while fracture mechanics evolved through 

the classical works of Sih and Liebowitz (1968) and 

the crack handbook of Tada et al. (2000). Mura 

(1987) further advanced micromechanical 

treatments of defects, giving insight into cracks as 

singularities within elastic continua. 

Thermoelastic crack problems gained prominence 

with Mindlin and Ogden (1976), who presented 

exact solutions, and Hutchinson and Suo (1991), 

who refined mixed-mode crack tip formulations. 

More recently, Khobragade and Kulkarni (2021) 

and Deshmukh and Kulkarni (2022) analyzed 

thermoelastic responses in cracked and circular 

geometries, while Gaikwad and Ghadle (2023) 

extended such studies to functionally graded 

materials using transform techniques. 

Although steady-state thermoelastic crack problems 

are well documented, transient analyses of penny-

shaped cracks in infinite solids remain less 

explored. Such studies are critical in high-

temperature engineering applications where sudden 

thermal shocks govern crack growth and stability. 

The present work addresses this gap through 

analytical and numerical investigation of transient 

thermoelastic fields and stress intensity factors 

(SIFs) around penny-shaped cracks using integral 

transform methods. 

2. Formulation 

In this paper ,  consider an infinite thermoelastic 

solid containing a penny-shaped crack of radius a. 

The material is subjected to a time-dependent 

thermal load T (t) and remote uniform stress σ. The 

governing equations for thermoelasticity in this 

context are a combination of heat conduction and 

elasticity equations. 
  

2.1 Heat Conduction Equation (Fourier’s Law) 

 

 

where T = T (r, t) is the temperature field, α is the 

thermal diffusivity of the material, and ∇2T is the 

Laplacian operator in radial coordinates. 

  

2.2 Elasticity Equation (Stress-Strain Relationship) 

σij = Cijklϵkl 

where σij is the stress tensor, Cijkl is the elastic 

modulus tensor, and ϵkl is the strain tensor. For an 

isotropic material, the strain tensor is related to the 

displacement field ui as: 

 
 

2.3 Thermoelasticity Equation 

σij = Cijklϵkl − αTδij 

where α is the coefficient of thermal expansion, and 

T is the temperature field. 
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3. Methodology 

To solve the governing equations, we employ 

integral transform techniques. These methods are 

useful because they convert partial differential 

equations into simpler ordinary differential 

equations that are easier to solve. 

  

3.1  Laplace Transform 

The Laplace transform is applied to the heat 

conduction equation in order to solve for the 

temperature distribution. The Laplace transform of 

T (r, t) with respect to time t is defined as: 

 

where s is the Laplace transform variable. 

                             

4.  Solution          
  Apply the Hankel and Laplace transform to 

equation which is given in 2.1 we get,  

 
 

𝑇̄(𝑘, 𝑧, 𝑠) = 𝐴(𝑘, 𝑠) 𝑒−√𝑘
2+𝑠/𝛼 |𝑧| 

 

Thermoelastic Displacement function 

 

 

Obtained Stress function :  

 

.  

5. Results and Discussion 

The primary quantity of interest in fracture 

mechanics is the stress intensity factor (SIF), which 

quantifies the intensity of the stress field near the 

crack tip. 

For a penny-shaped crack under thermal and 

mechanical loading, the SIF KI  

Is given by  

                                                      

where: 

• a is the radius of the crack, 

• σ is the applied stress, 

• T (t) is the temperature at the crack tip as a 

function of time, 

• E is Young’s modulus of the material. 

  

5.  Conclusion 

In this paper the transient thermoelastic response of 

penny-shaped cracks in infinite solids under 

coupled thermal and mechanical loading. By 

employing Laplace and Hankel transforms, closed-

form solutions for displacement, stress, and 

temperature fields have been derived, leading to 

explicit evaluation of stress intensity factors (SIFs). 

The study emphasizes that crack-tip fields are 

strongly influenced by the time dependence of 

applied loads, with thermal shocks significantly 

amplifying the stress concentration. These findings 

not only extend classical thermoelastic fracture 

theories but also provide a framework for predicting 

the reliability of materials subjected to dynamic 

environments such as aerospace, nuclear, and high-

temperature structural applications.. 
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