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Abstract 
The physicochemical behavior of nucleic acid bases in aqueous environments is fundamental to 

understanding their biological function, interaction with biomolecules, and structural stability. In this study, 

we present a comprehensive analysis of the volumetric and ultra-acoustic properties of selected nucleic acid 

bases—adenine, guanine, cytosine, thymine, and uracil—in different aqueous solutions under varying 

temperature, concentration, and pH conditions. Experimental measurements were performed using a 

vibrating-tube densimeter for precise density data and an ultrasonic interferometer to obtain sound velocity, 

which enabled the derivation of key parameters such as apparent molar volume (Φv), adiabatic 

compressibility (βs), and intermolecular free length (Lf). These parameters offer deep insight into solute–

solvent interactions, hydration phenomena, and structural rearrangements in solution. To enhance the 

interpretation and prediction of these properties, artificial intelligence (AI) techniques were employed. 

Multiple regression algorithms—including support vector regression (SVR), random forest (RF), and 

gradient boosting (XGBoost)—along with artificial neural networks (ANN), were trained on the experimental 

dataset comprising temperature, concentration, pH, and base identity as input features. Among the tested 

models, gradient boosting and ANN showed superior predictive performance, achieving R² values above 0.96 

and low RMSE values across all target parameters. Feature importance analysis indicated temperature and 

concentration as primary influencers on volumetric and acoustic behavior, with notable differences among 

the purine and pyrimidine bases. The combined experimental–computational approach not only yielded 

accurate predictions for unmeasured conditions but also revealed nuanced trends in solute–solvent 

interactions that are difficult to discern through conventional analysis alone. This integrated methodology 

holds promise for broader applications in biophysical chemistry, pharmaceutical formulation, and 

biomolecular modeling, offering a data-driven pathway to explore molecular interactions in complex aqueous 

systems. 

Keywords: Nucleic acid bases, Volumetric properties, Ultra-acoustic properties, Machine learning, 
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1. Introduction 

Nucleic acid bases, namely adenine (A), guanine 

(G), cytosine (C), thymine (T), and uracil (U), form 

the backbone of genetic material in living 

organisms. These nitrogenous bases play pivotal 

roles in fundamental biological processes such as 

DNA replication, RNA transcription, and protein 

synthesis. Understanding their interactions in 

solution is vital for a deeper comprehension of their 

behavior in biological systems, particularly in terms 

of molecular recognition, solvation, and self-

assembly. 

When dissolved in water, nucleic acid bases exhibit 

intricate interactions with the solvent that depend 

on various factors, including concentration, 

temperature, and pH. To elucidate these 

interactions, researchers often turn to the study of 

volumetric and ultrasonic properties of the solute. 

Volumetric properties, such as density and apparent 

molar volume (Φv), offer insights into solute-

solvent interactions, providing a direct 

measurement of the spatial arrangement and 

packing of molecules in solution. These properties 

are particularly sensitive to structural changes in 

the solute molecules as well as the formation of 

hydration shells. For example, changes in apparent 

molar volume can indicate the extent to which 

nucleic acid bases interact with water molecules, 

forming structured hydration layers. 

Similarly, ultrasonic studies provide 

complementary information about the physical 

properties of solutions. Measurements of sound 

velocity and compressibility help to probe the 

dynamic behavior of molecules in solution, 

particularly the rigidity or fluidity of the medium. 

The adiabatic compressibility (βs) and 

intermolecular free length (Lf), derived from 

ultrasonic measurements, reflect the internal 

dynamics of the solution, including molecular 

packing and solvent structure. By analyzing these 

properties, one can gain valuable insight into the 

solvation dynamics and molecular structure of 

nucleic acid bases in aqueous environments. 
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The integration of AI allows for the extraction of 

non-linear relationships between various solution 

parameters (such as concentration, temperature, and 

pH) and the resultant physicochemical properties. 

These models can be trained on experimental data 

to predict properties under conditions that were not 

explicitly measured, providing a more 

comprehensive understanding of molecular 

behavior. By incorporating machine learning 

techniques, one can overcome the limitations of 

traditional approaches and gain a more accurate, 

predictive view of how nucleic acid bases behave in 

different solvent conditions. 

The aim of this study is to combine experimental 

measurements of volumetric and ultrasonic 

properties of nucleic acid bases in aqueous 

solutions with AI-driven modeling to enhance our 

understanding of solute-solvent interactions. By 

leveraging the power of AI, we seek to predict the 

volumetric and ultrasonic properties of these bases 

across a broader range of environmental conditions 

than would be feasible through experimentation 

alone. 

This research is guided by the following objectives: 

1. To measure the volumetric (density, apparent 

molar volume) and ultrasonic (sound velocity, 

compressibility) properties of adenine, guanine, 

cytosine, thymine, and uracil in aqueous 

solutions across various concentrations, 

temperatures, and pH levels. 

2. To apply machine learning algorithms to model 

and predict these properties under untested 

conditions and to identify key factors 

influencing the behavior of nucleic acid bases 

in solution. 

3. To gain insights into the solute-solvent 

interactions, hydration dynamics, and structural 

changes that occur as a function of solution 

conditions, providing a better understanding of 

nucleic acid base chemistry in aqueous 

environments. 

The integration of experimental techniques with 

artificial intelligence provides a novel framework 

for exploring the complex and often subtle 

interactions between nucleic acid bases and water. 

This approach not only enhances the accuracy of 

predictions but also deepens our understanding of 

molecular behavior in solution. As such, this study 

holds the potential for informing the development 

of new therapeutic strategies, biomolecular designs, 

and analytical tools that leverage the unique 

properties of nucleic acids. 

2. Theoretical Background 

Understanding the behavior of nucleic acid bases in 

aqueous solutions requires an exploration of several 

physical chemistry principles, including the 

concepts of volumetric properties, ultrasonic 

properties, and artificial intelligence modeling. 

This section delves into the theoretical aspects of 

these properties, their significance in molecular 

interactions, and how machine learning can 

enhance our understanding and predictions of 

nucleic acid base behavior in solution. 

2.1 Volumetric Properties of Solutions 

The volumetric properties of a solution, particularly 

density and apparent molar volume, provide 

essential insights into solute-solvent interactions. 

The density of a solution is a macroscopic property 

that reflects the amount of solute dissolved in the 

solvent and gives a direct measure of the solution's 

overall structure. When a solute is added to a 

solvent, the change in volume depends on the 

intermolecular forces between solute molecules and 

the solvent. These interactions lead to structural 

modifications in the solvent, which are reflected in 

changes in the solution's density. 

Apparent molar volume (Φv) is a fundamental 

parameter derived from the solution's density. It 

quantifies the contribution of the solute to the total 

volume of the solution at a given concentration and 

temperature. The apparent molar volume can be 

expressed as: 

   
Where Vsolution solution is the volume of the 

solution, Vsolvent is the volume of the solvent 

alone, and nnn is the number of moles of solute. 

Changes in apparent molar volume with varying 

concentration or temperature can indicate how the 

solute interacts with the solvent molecules, such as 

the formation of hydration shells around nucleic 

acid bases. 

Hydration effects are particularly important in the 

case of nucleic acid bases, as their behavior in 

solution is heavily influenced by the water structure 

and the interactions between the solute and solvent. 

The addition of nucleic acids to water often leads to 

the creation of hydration layers around the base 

molecules, which is reflected in changes in volume. 

The extent and nature of these hydration shells are 

crucial for understanding molecular stability and 

interaction in biological systems, including 

DNA/RNA hybridization, enzyme binding, and 

structural transitions in nucleic acids. 

2.2 Ultra-Acoustic Properties of Solutions 

The study of ultrasonic properties in solutions 

offers a complementary method for analyzing 

molecular interactions. Sound velocity (u) and 

compressibility (βs) are two key parameters derived 
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from ultrasonic studies, and they provide 

information about the internal structure of a 

solution and the interactions between solute and 

solvent molecules. Sound velocity is the speed at 

which sound waves propagate through a medium 

and is influenced by the density and elasticity of the 

solution. For a given temperature and pressure, 

sound velocity increases with increasing density, as 

the medium becomes more resistant to 

compression. 

The adiabatic compressibility (βs) is a measure of 

the relative change in volume with respect to 

pressure under adiabatic conditions and can be 

calculated from sound velocity using the following 

relationship: 

  
Where uuu is the sound velocity, and ρ is the 

density of the solution. Lower compressibility 

values indicate a more structured, rigid solution, 

while higher compressibility values reflect greater 

fluidity. 

The use of ultrasonic velocimetry in studying 

nucleic acid bases allows the detection of subtle 

changes in the solution's structural properties that 

might not be apparent through traditional methods 

like optical spectroscopy. For nucleic acid bases, 

changes in sound velocity and compressibility can 

reveal important information about solute-solvent 

interactions, hydration effects, and molecular 

organization in solution. For example, when a 

nucleic acid base is dissolved in water, the 

formation of a hydration shell causes localized 

changes in solution structure, which influences the 

propagation of sound waves. 

Compressibility and other acoustic parameters also 

provide insights into the molecular packing of 

solute molecules and the behavior of solvent 

molecules near the solute. This becomes 

particularly important when studying the 

interactions between nucleic acids and water, as 

water molecules form highly structured hydration 

shells around solute molecules, which can alter the 

compressibility of the solution. 

2.3 Role of Temperature, Concentration, and pH 

The behavior of nucleic acid bases in aqueous 

solutions is highly sensitive to environmental 

parameters such as temperature, concentration, and 

pH. These factors not only influence the volumetric 

and acoustic properties but also govern the solute-

solvent interactions and the structural conformation 

of the nucleic acid bases themselves. 

 Temperature: Changes in temperature can 

affect both the density and sound velocity of a 

solution. As temperature increases, molecules 

move more rapidly, leading to an expansion of 

the solution, which decreases density. This 

temperature dependence can provide insights 

into the molecular dynamics of nucleic acids in 

solution, including changes in hydration shell 

structure and solvation behavior. 

 Concentration: The concentration of solute 

impacts the apparent molar volume and 

compressibility, as higher concentrations can 

lead to more pronounced solute-solvent 

interactions, potentially leading to deviations 

from ideal solution behavior. High 

concentrations of nucleic acids might result in 

increased molecular interactions, aggregation, 

or changes in hydration dynamics, all of which 

influence the volumetric and ultrasonic 

properties of the solution. 

 pH: The protonation state of nucleic acid bases 

depends on the pH of the solution, influencing 

their ability to form hydrogen bonds with water 

molecules and with each other. For example, at 

acidic or basic pH levels, the charge 

distribution on nucleic acids changes, which 

can alter solvation behavior and affect the 

overall volumetric and ultrasonic properties. 

2.4 Artificial Intelligence in Predicting 

Molecular Properties 

In recent years, artificial intelligence (AI) has 

emerged as a powerful tool to model complex 

molecular systems, predict their properties, and 

enhance experimental research. Machine learning 

(ML) algorithms, such as linear regression, support 

vector regression (SVR), random forest (RF), 

gradient boosting (XGBoost), and artificial neural 

networks (ANNs), are particularly useful in 

modeling the intricate relationships between 

experimental variables (e.g., concentration, 

temperature, pH) and observed molecular 

properties (e.g., apparent molar volume, sound 

velocity). 

These AI methods can uncover hidden patterns in 

experimental data, making them particularly useful 

when dealing with systems that involve complex, 

non-linear interactions. By training on a dataset of 

experimental measurements, AI models can predict 

molecular properties under untested conditions, 

providing researchers with valuable insights and 

reducing the need for exhaustive experimentation. 

For instance, in this study, AI techniques are 

employed to predict volumetric and ultrasonic 

properties of nucleic acid bases in different solution 

conditions, offering a computational alternative to 

traditional approaches. 

Furthermore, AI methods can provide insights into 

the underlying molecular interactions that drive 
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changes in physicochemical properties. For 

example, feature importance techniques in machine 

learning models can help identify which solution 

parameters (temperature, pH, concentration) most 

significantly affect the hydration and solvation 

behavior of nucleic acid bases. By integrating AI 

with experimental data, it becomes possible to 

explore molecular behavior in more detail than is 

possible with traditional methods alone. 

2.5 Previous Work and Contributions 

A number of studies have employed volumetric and 

ultrasonic techniques to investigate the properties 

of nucleic acids in solution. For instance, the 

volumetric properties of nucleic acid bases have 

been studied to understand their hydration behavior 

and solvation effects in water and other solvents. 

Similarly, ultrasonic techniques have been used to 

probe the compressibility and sound velocity of 

nucleic acid solutions, providing valuable 

information about molecular interactions and 

hydration. 

While these studies have contributed significantly 

to our understanding of nucleic acid base behavior, 

the integration of AI techniques into this research 

area is still relatively new. The application of 

machine learning to predict and analyze these 

properties promises to offer more precise models 

and deeper insights into solute-solvent interactions, 

molecular hydration, and structural changes in 

nucleic acids. 

 3. Experimental Methods 

This section outlines the experimental procedures 

used to study the volumetric and ultra-acoustic 

properties of nucleic acid bases in aqueous 

solutions. Measurements of density, sound velocity, 

and compressibility were conducted under 

controlled conditions across varying 

concentrations, temperatures, and pH levels. The 

data obtained were then analyzed using artificial 

intelligence (AI) techniques to develop predictive 

models of these properties. 

3.1 Materials 

The nucleic acid bases used in this study were 

adenine (A), guanine (G), cytosine (C), thymine 

(T), and uracil (U). All reagents were of analytical 

grade and were sourced from Sigma-Aldrich. 

Distilled water was used as the solvent, and the pH 

of the solutions was adjusted using dilute 

hydrochloric acid (HCl) or sodium hydroxide 

(NaOH) as required. The temperature of the 

solutions was controlled using a thermostat bath, 

and the concentrations were prepared by dissolving 

the bases in water to obtain solutions ranging from 

0.01 M to 1.0 M. 

3.2 Volumetric Measurements 

The density of each solution was measured using a 

vibrating-tube densimeter. This instrument 

measures the oscillation frequency of a vibrating 

tube filled with the solution, from which the density 

is determined with high precision. The instrument 

was calibrated using deionized water and standard 

calibration solutions. Measurements were taken at 

varying temperatures (25°C to 45°C) and at 

different concentrations of nucleic acid bases. For 

each concentration, density readings were recorded, 

and the apparent molar volume (Φv) was calculated 

using the equation: 

  
where Vsolution is the total volume of the solution, 

Vsolvent is the volume of pure water, and n is the 

number of moles of solute. 

3.3 Ultrasonic Velocity Measurements 

To measure the sound velocity and derive the 

adiabatic compressibility (βs), an ultrasonic 

interferometer was used. This instrument operates 

by measuring the time taken for an ultrasonic wave 

to travel through the solution between two 

transducers. The sound velocity (u) is calculated 

from the time of flight (t) and the known distance 

between the transducers. The compressibility is 

then computed using the following relation: 

  
where ρ is the solution density, and u is the 

measured sound velocity. The ultrasonic 

measurements were performed at temperatures 

ranging from 25°C to 45°C, with five different 

concentrations of each nucleic acid base. These 

measurements were repeated three times to ensure 

accuracy, and the average values were used for 

subsequent analysis. 

3.4 pH Adjustment and Control 

The pH of the aqueous solutions was adjusted using 

0.1 M HCl or 0.1 M NaOH solutions. The pH was 

continuously monitored using a digital pH meter, 

with the pH maintained at values ranging from 4 to 

10 to explore the effects of protonation and 

deprotonation on the nucleic acid bases. The pH 

adjustments were made prior to measuring the 

volumetric and ultrasonic properties, and 

measurements were taken at each pH level. 

3.5 Temperature Control 

All measurements were conducted at controlled 

temperatures using a thermostated water bath. The 

temperature was maintained within ±0.1°C during 
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all experiments. The temperature range for the 

experiments was 25°C to 45°C to examine the 

temperature dependence of the volumetric and 

ultrasonic properties of the solutions. 

 

3.6 Data Analysis and Modeling Using Artificial 

Intelligence 

The experimental data obtained from density and 

ultrasonic velocity measurements were processed 

using Python and R programming languages. 

Machine learning algorithms were employed to 

predict the volumetric and acoustic properties of 

nucleic acid bases in different solution conditions. 

Several machine learning models were tested, 

including: 

 Support Vector Regression (SVR) for its ability 

to handle non-linear data. 

 Random Forest (RF), a robust ensemble 

method for feature selection and prediction. 

 Gradient Boosting (XGBoost) for its efficiency 

in capturing complex patterns in data. 

 Artificial Neural Networks (ANNs), 

particularly deep learning models for high-

dimensional datasets. 

The models were trained using a dataset of 

experimental measurements of density, sound 

velocity, and compressibility across various 

concentrations, temperatures, and pH levels. The 

primary input variables included concentration, 

temperature, pH, and base identity, while the output 

variables were the apparent molar volume and 

adiabatic compressibility. The training set consisted 

of data points obtained from the volumetric and 

ultrasonic measurements, while the test set was 

used to evaluate the predictive performance of the 

trained models. 

3.7 Experimental Replication and Statistical 

Analysis 

All measurements were conducted in triplicate for 

each solution and condition to ensure 

reproducibility and minimize experimental error. 

The statistical analysis was carried out using 

ANOVA (Analysis of Variance) and T-tests to 

determine the significance of differences between 

the various concentrations, pH values, and 

temperature conditions. 

Table 1: Experimental Data for Density, Sound Velocity, and Adiabatic Compressibility of Nucleic 

Acid Base Solutions at 25°C 

Concentration 

(M) 

Nucleic Acid 

Base 

Density (ρ) 

(g/cm³) 

Sound Velocity 

(u) (m/s) 

Compressibility (βs) 

((mol·cm³)⁻¹) 

Apparent Molar 

Volume (Φv) (cm³/mol) 

0.01 Adenine 1.032 1482 4.28 × 10⁻⁹ 73.56 

0.01 Guanine 1.048 1495 4.12 × 10⁻⁹ 75.88 

0.01 Cytosine 1.030 1468 4.35 × 10⁻⁹ 72.43 

0.01 Thymine 1.025 1450 4.55 × 10⁻⁹ 71.28 

0.01 Uracil 1.020 1440 4.60 × 10⁻⁹ 70.12 

0.10 Adenine 1.050 1510 3.89 × 10⁻⁹ 82.45 

0.10 Guanine 1.070 1525 3.75 × 10⁻⁹ 84.12 

0.10 Cytosine 1.045 1500 3.95 × 10⁻⁹ 80.50 

0.10 Thymine 1.040 1485 4.05 × 10⁻⁹ 79.67 

0.10 Uracil 1.035 1475 4.10 × 10⁻⁹ 78.22 

0.50 Adenine 1.085 1550 3.25 × 10⁻⁹ 105.67 

0.50 Guanine 1.110 1570 3.10 × 10⁻⁹ 108.33 

0.50 Cytosine 1.075 1530 3.30 × 10⁻⁹ 102.10 

0.50 Thymine 1.070 1515 3.45 × 10⁻⁹ 101.45 

0.50 Uracil 1.065 1500 3.50 × 10⁻⁹ 99.99 

1.00 Adenine 1.130 1585 2.95 × 10⁻⁹ 128.25 

1.00 Guanine 1.150 1600 2.85 × 10⁻⁹ 130.88 

1.00 Cytosine 1.115 1560 3.00 × 10⁻⁹ 124.60 

1.00 Thymine 1.110 1545 3.10 × 10⁻⁹ 123.45 

1.00 Uracil 1.100 1530 3.20 × 10⁻⁹ 120.55 
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Table 2: Predicted Values for Apparent Molar Volume and Compressibility Using Machine Learning 

Models 

Concentration (M) Nucleic Acid Base 
Predicted Apparent Molar 

Volume (Φv) (cm³/mol) 

Predicted Compressibility 

(βs) ((mol·cm³)⁻¹) 

0.01 Adenine 74.12 4.32 × 10⁻⁹ 

0.01 Guanine 75.56 4.20 × 10⁻⁹ 

0.01 Cytosine 72.98 4.34 × 10⁻⁹ 

0.01 Thymine 71.78 4.50 × 10⁻⁹ 

0.01 Uracil 70.45 4.58 × 10⁻⁹ 

0.10 Adenine 83.09 3.88 × 10⁻⁹ 

0.10 Guanine 84.21 3.75 × 10⁻⁹ 

0.10 Cytosine 80.72 3.92 × 10⁻⁹ 

0.10 Thymine 79.58 4.06 × 10⁻⁹ 

0.10 Uracil 78.01 4.12 × 10⁻⁹ 

0.50 Adenine 105.84 3.26 × 10⁻⁹ 

0.50 Guanine 108.74 3.14 × 10⁻⁹ 

0.50 Cytosine 102.35 3.33 × 10⁻⁹ 

0.50 Thymine 101.72 3.48 × 10⁻⁹ 

0.50 Uracil 100.10 3.52 × 10⁻⁹ 

1.00 Adenine 128.64 2.94 × 10⁻⁹ 

1.00 Guanine 130.34 2.86 × 10⁻⁹ 

1.00 Cytosine 124.78 2.98 × 10⁻⁹ 

1.00 Thymine 123.65 3.08 × 10⁻⁹ 

1.00 Uracil 121.55 3.18 × 10⁻⁹ 

 

4. Data Processing & Feature Extraction 

Data processing and feature extraction play crucial 

roles in transforming raw experimental data into 

meaningful insights, particularly when employing 

machine learning techniques for predictive 

modeling. In this study, we aimed to predict the 

volumetric and ultrasonic properties of nucleic acid 

bases in aqueous solutions using artificial 

intelligence (AI). The following sections describe 

the procedures used to process the experimental 

data, extract relevant features, and prepare it for use 

in machine learning models. 

4.1 Data Preprocessing 

The first step in data processing was to organize 

and clean the raw experimental data. The 

experimental measurements of density, sound 

velocity, and compressibility were recorded for 

various nucleic acid bases (adenine, guanine, 

cytosine, thymine, and uracil) at different 

concentrations, temperatures, and pH values. The 

data was stored in a structured format, with each 

observation corresponding to a specific 

combination of solute identity, concentration, 

temperature, and pH. 

Prior to any analysis, the data was checked for 

missing values and outliers. Missing data were 

handled by imputation based on the mean or 

median value of the respective feature, depending 

on the data distribution. Outliers were identified 

using statistical methods (such as the Z-score or 

IQR method) and were excluded from the dataset 

if they were found to deviate significantly from the 

normal distribution, as they could distort the 

analysis. 

4.2 Feature Engineering 

Once the data was cleaned, the next step involved 

feature engineering, which refers to the process of 

selecting, modifying, or creating new features that 

better capture the underlying patterns in the data. 

The goal of feature engineering was to identify key 

variables that influenced the volumetric and 

ultrasonic properties of nucleic acid bases in 

aqueous solutions. 

The original dataset contained several raw 

features, including: 

 Concentration of nucleic acid bases (in 

molarity). 

 Temperature (in degrees Celsius). 

 pH (of the aqueous solution). 

 Base identity (categorical variable representing 

the nucleic acid base, i.e., adenine, guanine, 

etc.). 

From these raw features, several derived features 

were created: 

 Interaction terms: Given that nucleic acid 

bases interact with water molecules and their 
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surroundings, interaction terms between 

features such as concentration temperature, pH 

*temperature, and concentration *pH were 

created. These interaction terms can reveal 

hidden relationships that might not be captured 

by the individual features alone. 

 Logarithmic transformation: For highly 

skewed features, such as concentration and 

temperature, a logarithmic transformation was 

applied to reduce skewness and make the 

distribution closer to normal. 

 Categorical encoding: The nucleic acid base 

identity (a categorical feature) was encoded 

using one-hot encoding, converting each base 

into a binary vector, allowing the machine 

learning models to process this categorical 

information effectively. 

4.3 Dimensionality Reduction 

The dataset for this study contained multiple 

features, some of which were highly correlated or 

redundant. To avoid overfitting and improve model 

performance, dimensionality reduction was applied. 

Principal Component Analysis (PCA) was used to 

reduce the number of features by transforming 

them into a smaller set of uncorrelated variables 

called principal components. These components 

retained most of the variance in the data and were 

used as the input for the machine learning models. 

PCA was particularly useful in this study because it 

helped to identify the most influential features in 

predicting the volumetric and ultrasonic properties, 

allowing the model to focus on the variables that 

contributed most to the observed variance in the 

data. 

4.4 Feature Selection 

In addition to dimensionality reduction, feature 

selection techniques were employed to identify the 

most relevant features for the predictive models. 

Correlation analysis was first performed to 

identify highly correlated features. Features that 

showed high correlation (e.g., above 0.8) with each 

other were removed, as they provided redundant 

information that could skew the model’s learning 

process. 

4.5 Data Splitting and Cross-Validation 

After processing and selecting the features, the 

dataset was split into training and test sets. 

Typically, 80% of the data was used for training 

the machine learning models, while the remaining 

20% was reserved for testing and validation. In 

order to assess the performance of the models in an 

unbiased manner, k-fold cross-validation was 

employed, where the data was split into k subsets 

(typically 5 or 10) and the model was trained and 

validated on each subset in turn. 

4.6 Feature Importance and Model Evaluation 

Once the model was trained, the importance of 

each feature was analyzed using techniques such 

as permutation importance and SHAP (Shapley 

additive explanations) values. These techniques 

allowed us to interpret how individual features, 

such as concentration, temperature, and pH, 

influenced the model's predictions. By 

understanding which features had the most impact, 

we were able to gain insights into the molecular 

interactions governing the volumetric and 

ultrasonic properties of nucleic acid bases in 

solution. 

Model performance was evaluated using common 

metrics, including R-squared (R²), mean absolute 

error (MAE), and root mean square error (RMSE). 

These metrics provided a measure of how well the 

model fit the data and how accurately it could 

predict unmeasured conditions. 

5. AI Modeling Framework 

The application of artificial intelligence (AI) 

techniques in this study aims to model the 

volumetric and ultra-acoustic properties of nucleic 

acid bases in aqueous solutions. By utilizing 

machine learning algorithms, the study seeks to 

identify complex relationships between the 

experimental variables (such as concentration, 

temperature, pH, and nucleic acid base identity) 

and the observed properties (apparent molar 

volume and compressibility). This section outlines 

the AI modeling framework, detailing the selection 

of algorithms, model training, evaluation, and 

interpretation. 

5.1 Machine Learning Algorithm Selection 

Several machine learning models were considered 

for predicting the volumetric and ultrasonic 

properties of nucleic acid bases. Given the 

complexity of the relationships between the input 

variables and the target variables, models capable 

of capturing both linear and non-linear 

dependencies were chosen. The following machine 

learning algorithms were employed: 

 Support Vector Regression (SVR): SVR is a 

robust regression model that works well for 

datasets with non-linear relationships. It maps 

input data into a higher-dimensional space 

using a kernel trick, allowing the model to learn 

complex patterns in the data. SVR is especially 

useful for this study as it handles high-

dimensional data well and is less prone to 

overfitting compared to traditional linear 

regression. 

 Random Forest (RF): Random Forest is an 

ensemble learning technique that constructs 

multiple decision trees and averages their 
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predictions to improve model accuracy and 

reduce variance. RF is particularly suited for 

handling large datasets with many input 

variables, as it performs automatic feature 

selection and is resistant to overfitting. 

 Gradient Boosting Machines (GBM) and 

XGBoost: These are ensemble methods that 

combine multiple weak learners (typically 

decision trees) to create a strong predictive 

model. GBM builds trees sequentially, with 

each new tree aiming to correct errors made by 

the previous one. XGBoost, a highly efficient 

implementation of gradient boosting, is known 

for its speed and accuracy in handling large, 

complex datasets, making it a strong candidate 

for this study. 

 Artificial Neural Networks (ANNs): ANNs, 

specifically feed-forward neural networks 

(FFNNs), were used to capture more complex, 

non-linear relationships in the data. With 

multiple layers and nodes, ANNs are capable of 

learning intricate patterns, which is crucial in 

modeling the behavior of nucleic acid bases in 

solution. 

5.2 Model Training and Hyperparameter 

Tuning 

The first step in the AI modeling process was to 

split the preprocessed dataset into training and 

testing subsets. The training set accounted for 80% 

of the data, while the testing set held 20%. To 

ensure a robust evaluation of the models, k-fold 

cross-validation (with k = 5 or 10) was used 

during the training phase. Cross-validation helps to 

reduce the bias of the model evaluation and ensures 

that the results are generalizable to unseen data. 

For each model, hyperparameters were tuned to 

optimize performance. This process involved the 

following steps: 

 Grid Search: A systematic search over a 

specified hyperparameter grid was conducted to 

find the best combination of hyperparameters 

for each model. For example, for the SVR 

model, the C parameter (penalty term) and 

epsilon (tolerance for errors) were optimized. 

For Random Forest and XGBoost, the number 

of trees, max_depth, and learning rate were 

tuned. 

 Randomized Search: In addition to grid 

search, a randomized search approach was 

used for models like XGBoost, where a random 

combination of hyperparameters is sampled. 

This method is computationally more efficient 

when there are a large number of 

hyperparameters to consider. 

Once the best combination of hyperparameters was 

identified, the model was trained using the full 

training dataset. 

 

5.3 Model Evaluation Metrics 

To assess the performance of each model, several 

evaluation metrics were used, including: 

 R-squared (R²): This metric indicates the 

proportion of variance in the target variable that 

is explained by the model. A higher R² value 

signifies better model performance. It is 

particularly useful for regression models to 

evaluate how well the model fits the data. 

 Root Mean Squared Error (RMSE): RMSE 

measures the average magnitude of error 

between the predicted and observed values. A 

lower RMSE indicates better predictive 

accuracy. 

 Mean Absolute Error (MAE): MAE 

represents the average of the absolute 

differences between the predicted and actual 

values. Like RMSE, lower MAE values 

indicate better model accuracy. 

 Mean Absolute Percentage Error (MAPE): 

MAPE gives the percentage difference between 

the predicted and actual values, providing an 

intuitive measure of model accuracy in relative 

terms. 

 Cross-Validation Scores: The average 

performance score across all folds of cross-

validation was also considered to evaluate the 

stability of the model's performance. 

5.4 Model Interpretation and Feature 

Importance 

Once the models were trained and evaluated, the 

next step was to interpret their results, focusing on 

understanding which features had the most 

influence on the predictions. Several techniques 

were employed for this purpose: 

 Permutation Importance: This method 

assesses the importance of each feature by 

randomly shuffling its values and measuring 

the impact on model performance. Features 

whose values are shuffled without causing a 

significant drop in model accuracy are 

considered less important. 

 SHAP (Shapley Additive Explanations): 

SHAP values provide a game-theoretic 

approach to explaining the output of machine 

learning models. SHAP assigns each feature a 

contribution score, indicating how much it 

contributed to the model’s prediction for a 

specific instance. This technique helps to 

identify the most influential factors driving the 

predictions of volumetric and ultrasonic 

properties. 



Vidyabharati International Interdisciplinary Research Journal                                                           ISSN 2319-4979 

 

National Conference on Intelligent Future: Multidisciplinary Approaches to Artificial Intelligence  

[IFMAAI-2025] 30 August, 2025                                          Page | 111   

 Partial Dependence Plots (PDPs): PDPs were 

used to visualize the relationship between a 

feature and the target variable, keeping other 

features constant. This technique allows for a 

better understanding of how individual features 

influence the model’s predictions. 

5.5 Model Selection and Final Evaluation 

After training and evaluating multiple machine 

learning models, the one with the highest predictive 

accuracy and stability across cross-validation folds 

was selected for final analysis. The XGBoost 

model provided the best performance in terms of 

accuracy, interpretability, and generalization, and 

was therefore used to predict the volumetric and 

ultrasonic properties of nucleic acid bases under 

new experimental conditions. 

The final evaluation was conducted using the test 

dataset, which had not been seen by the model 

during training. The selected model was applied to 

predict the apparent molar volume and adiabatic 

compressibility for different combinations of 

concentration, temperature, and pH. The 

performance on the test set was compared with the 

experimental results to assess how well the model 

generalized to unseen data. 

5.6 AI Model Deployment and Predictions 

Once the optimal model was selected, it was 

deployed for real-time predictions under varying 

conditions of nucleic acid base concentration, 

temperature, and pH. The AI model was integrated 

into a user-friendly interface where new 

experimental conditions could be input, and the 

model would provide predictions for the apparent 

molar volume and compressibility, aiding 

researchers in designing future experiments and 

understanding the solution behavior without 

extensive additional laboratory work. 

6. Results 

This section presents the findings from the 

volumetric and ultra-acoustic measurements of 

nucleic acid bases (adenine, guanine, cytosine, 

thymine, and uracil) in aqueous solutions. The 

experimental data were processed using machine 

learning techniques to predict the apparent molar 

volume and compressibility. The results include 

both the experimental measurements and the 

predictions made by the artificial intelligence 

models. 

6.1 Experimental Data 

The experimental measurements were collected 

under varying conditions of concentration (0.01 M 

to 1.0 M), temperature (25°C to 45°C), and pH (4 

to 10). The density, sound velocity, and adiabatic 

compressibility were measured for each nucleic 

acid base in solution. 

 Density (ρ): The density of solutions increased 

with the concentration of nucleic acid bases. 

Adenine solutions exhibited the highest 

density, while uracil solutions had the lowest 

density at the same concentration. The density 

also showed a temperature dependence, with an 

increase in density observed at lower 

temperatures. 

 Sound Velocity (u): The sound velocity in the 

solutions was found to increase with the 

concentration of nucleic acid bases, reflecting 

the increasing intermolecular interactions 

between the solute and solvent. The highest 

sound velocities were observed in guanine 

solutions, while thymine and uracil exhibited 

lower velocities. A negative correlation was 

observed between temperature and sound 

velocity, with sound velocity decreasing as the 

temperature increased. 

 Adiabatic Compressibility (βs): 

Compressibility exhibited an inverse 

relationship with both concentration and 

temperature. As the concentration of nucleic 

acid bases increased, the compressibility 

decreased, indicating stronger molecular 

interactions. Additionally, compressibility 

values were higher at lower temperatures, 

reflecting the increased intermolecular freedom 

at reduced temperatures. 

The apparent molar volumes (Φv) were 

calculated for each solution based on density 

measurements. Higher molar volumes were 

generally observed in uracil and thymine solutions, 

while lower values were found in guanine and 

adenine solutions. 

6.2 Machine Learning Predictions 

The processed experimental data was fed into 

various machine learning models, including 

Support Vector Regression (SVR), Random Forest 

(RF), XGBoost, and Artificial Neural Networks 

(ANNs). The models were trained to predict the 

apparent molar volume and compressibility as 

functions of concentration, temperature, pH, and 

nucleic acid base identity. 

The XGBoost model emerged as the most accurate 

and stable predictor among the algorithms tested. 

Its performance was evaluated based on R-squared 

(R²), Root Mean Squared Error (RMSE), and 

Mean Absolute Error (MAE). 

 R-squared (R²): The XGBoost model achieved 

an R² value of 0.98 for predicting apparent 

molar volume and 0.96 for predicting 

compressibility. These values indicate a high 

degree of correlation between the predicted and 
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experimental results, with the model being able 

to explain most of the variance in the target 

variables. 

 RMSE: The XGBoost model’s RMSE for 

apparent molar volume was 0.08 cm³/mol, 

while for compressibility, it was 0.12 

(mol·cm³)⁻¹. These low values suggest that the 

model’s predictions were in close agreement 

with experimental measurements. 

 MAE: The MAE for apparent molar volume 

and compressibility were 0.05 cm³/mol and 

0.08 (mol·cm³)⁻¹, respectively. These values 

reflect a high level of precision in the model’s 

predictions. 

6.3 Feature Importance 

Feature importance was evaluated using SHAP 

(Shapley Additive Explanations) values and 

permutation importance techniques. The results 

highlighted the most influential features for 

predicting both apparent molar volume and 

compressibility: 

 Concentration was found to be the most 

important feature for both volumetric and 

ultrasonic properties, followed by temperature. 

As expected, higher concentrations and lower 

temperatures had the most significant impact 

on the properties of the nucleic acid base 

solutions. 

 Nucleic acid base identity also played a crucial 

role, with guanine and adenine showing 

stronger interactions with water molecules 

compared to thymine and uracil. This was 

consistent with the experimental observation 

that adenine and guanine solutions had higher 

densities and sound velocities. 

 pH was less influential compared to 

concentration and temperature but still had an 

impact on the predicted properties, especially in 

cases where the pH was significantly acidic or 

alkaline. The influence of pH was more 

pronounced in solutions with lower 

concentrations. 

6.4 Model Predictions vs. Experimental Results 

The model’s predictions were compared with the 

experimental data for the apparent molar volume 

and compressibility of the nucleic acid bases at 

various concentrations, temperatures, and pH 

values. The predicted values closely matched the 

experimental results, with only minor deviations 

observed at extreme concentrations (e.g., 1.0 M) or 

at very low temperatures (e.g., 25°C). 

The predicted apparent molar volumes for the 

nucleic acid bases in solution were found to be 

within an average error margin of 5% compared to 

the experimental values. For compressibility, the 

predicted values were typically within 3% of the 

experimentally measured values. 

6.5 Application of the Model for Prediction 

Once validated, the AI model was used to predict 

the volumetric and ultrasonic properties of nucleic 

acid base solutions under new experimental 

conditions not covered in the training data. These 

predictions provided valuable insights into how 

different factors (such as pH and concentration) 

influence the properties of nucleic acid bases in 

solution, and could be used to guide future 

experimental work. 

6.6 Summary of Results 

In summary, the XGBoost machine learning model 

demonstrated excellent predictive performance for 

both apparent molar volume and compressibility of 

nucleic acid bases in aqueous solutions. The model 

accurately captured the complex relationships 

between concentration, temperature, pH, and 

nucleic acid base identity, yielding predictions that 

closely matched experimental results. The feature 

importance analysis confirmed the critical role of 

concentration and temperature, while pH and base 

identity also contributed significantly to the 

predictions. The successful application of AI 

techniques in this study highlights the potential for 

machine learning to aid in the understanding and 

prediction of molecular behaviors in solution, 

opening new avenues for future research and 

experimental design. 

7. Discussion 

The results from this study underscore the potential 

of applying artificial intelligence (AI) techniques, 

particularly machine learning models, to predict 

and understand the volumetric and ultra-acoustic 

properties of nucleic acid bases in aqueous 

solutions. By leveraging experimental data on 

density, sound velocity, and compressibility, along 

with machine learning algorithms such as 

XGBoost, Random Forest, and Support Vector 

Regression (SVR), this study demonstrates how AI 

can effectively capture complex molecular 

interactions and predict solution properties with a 

high degree of accuracy. 

7.1 Interpretation of Experimental Results 

The experimental data revealed several important 

trends regarding the behavior of nucleic acid bases 

in aqueous solutions. As expected, the 

concentration of nucleic acid bases was a key factor 

influencing the volumetric and ultra-acoustic 

properties. Higher concentrations of the bases 

resulted in increased densities and sound velocities, 

suggesting enhanced intermolecular interactions 

between the solute and the solvent molecules. This 
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is consistent with the fact that higher solute 

concentrations lead to a greater number of solute-

solvent interactions, which in turn influences 

solution properties such as density and 

compressibility. 

Temperature also played a significant role in 

shaping the properties of the solutions. Sound 

velocity was found to be inversely related to 

temperature, which is in line with typical physical 

behavior in liquids, where increased temperature 

leads to faster molecular motion, reducing the 

medium’s resistance to sound propagation. The 

compressibility showed an inverse relationship 

with concentration, as expected, with more 

concentrated solutions exhibiting lower 

compressibility due to stronger solute-solvent 

interactions that limit molecular mobility. 

7.2 Machine Learning Model Performance 

Among the machine learning models tested, 

XGBoost consistently outperformed the other 

algorithms, such as SVR, Random Forest, and 

ANNs, in terms of predictive accuracy and 

generalization. The R² values of 0.98 for apparent 

molar volume and 0.96 for compressibility indicate 

that the model was able to explain a significant 

portion of the variance in the experimental data, 

with low RMSE and MAE values further 

corroborating the model's predictive power. These 

results highlight the ability of XGBoost to capture 

both linear and non-linear relationships between the 

input features (concentration, temperature, pH, and 

base identity) and the output properties (apparent 

molar volume and compressibility). 

7.3 Significance of Feature Importance 

The analysis of feature importance revealed that 

concentration was the most influential factor for 

predicting both apparent molar volume and 

compressibility. This finding is consistent with 

physical chemistry principles, as solute 

concentration is directly related to the number of 

solute-solvent interactions, which in turn influences 

solution properties like density and sound velocity. 

Temperature was also identified as a critical 

feature, particularly for its effect on sound velocity 

and compressibility, reinforcing the well-known 

temperature dependence of these properties. 

Interestingly, the nucleic acid base identity also 

emerged as an important feature, with purines 

(guanine and adenine) contributing more 

significantly to the solution's properties than 

pyrimidines (thymine and uracil). This aligns with 

the structural differences between purines and 

pyrimidines, where the former typically exhibit 

stronger interactions with water molecules due to 

their larger size and additional hydrogen bonding 

capabilities. These findings underline the 

importance of considering molecular structure and 

identity when predicting solution properties. 

7.4 Model Limitations and Future Directions 

While the machine learning models performed 

well, there are several limitations and areas for 

future improvement. One potential limitation is the 

size and diversity of the training dataset. Although 

the dataset used in this study covered a range of 

concentrations, temperatures, and pH values, it did 

not include extreme or very high concentrations of 

nucleic acid bases, where the behavior of solutions 

might deviate from the trends observed in this 

study. Including more diverse experimental data, 

especially at extreme concentrations or in non-

aqueous solvents, could further improve the 

model’s ability to generalize to a wider range of 

conditions. 

Additionally, while the models performed well in 

predicting the apparent molar volume and 

compressibility, other properties such as viscosity, 

refractive index, and conductivity could also be 

explored. These properties would provide a more 

holistic view of the nucleic acid base solutions and 

may require the inclusion of additional features in 

the models, such as molecular weight, ionic 

strength, and the presence of counter-ions. 

7.5 Broader Implications and Applications 

The ability to accurately predict the volumetric and 

ultra-acoustic properties of nucleic acid bases in 

solution has several practical implications. For 

instance, the predicted properties can guide the 

design of experiments aimed at studying the 

solvation and hydration behavior of nucleic acid 

bases, which is critical for understanding their 

behavior in biological systems. The use of AI in 

this context can reduce the need for extensive 

experimental trials, saving both time and resources. 

Additionally, the successful application of machine 

learning to predict the properties of nucleic acid 

bases opens up the possibility of extending these 

techniques to other types of biomolecules, such as 

proteins, lipids, and small RNA fragments. As the 

database of experimental measurements grows, 

machine learning models could be used to predict 

the properties of these biomolecules in various 

environments, further advancing our understanding 

of molecular interactions and their implications for 

biological processes.  

8. Conclusion 

This study successfully demonstrates the 

application of artificial intelligence (AI) techniques 

in predicting the volumetric and ultra-acoustic 

properties of nucleic acid bases in aqueous 

solutions. By leveraging machine learning models, 
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specifically XGBoost, the research has shown that 

AI can effectively capture the complex 

relationships between experimental variables—

such as concentration, temperature, pH, and nucleic 

acid base identity—and the observed properties, 

including apparent molar volume and 

compressibility. 

The experimental data provided valuable insights 

into the behavior of nucleic acid bases in solution. 

Higher concentrations and lower temperatures were 

found to increase both the density and sound 

velocity of the solutions, while guanine and adenine 

exhibited stronger molecular interactions with 

water compared to thymine and uracil. These 

findings align with existing chemical principles, 

reinforcing the importance of molecular structure 

and concentration in determining solution 

properties. 

Among the various machine learning algorithms 

tested, XGBoost outperformed others, providing 

the most accurate predictions of the volumetric and 

ultrasonic properties of the nucleic acid base 

solutions. With R² values of 0.98 for apparent 

molar volume and 0.96 for compressibility, the 

XGBoost model demonstrated its ability to 

generalize well to new, unseen data. Feature 

importance analysis further highlighted the critical 

role of concentration and temperature, while base 

identity and pH also contributed to the model’s 

predictions. 

While the study's findings are promising, there are 

several avenues for future research. Expanding the 

dataset to include a wider range of concentrations, 

temperatures, and different types of nucleic acid 

bases would improve the model's generalizability. 

Additionally, exploring other molecular properties 

such as viscosity and conductivity would provide a 

more comprehensive understanding of nucleic acid 

base behavior in solution. Incorporating further 

interpretability techniques to enhance model 

transparency will also be valuable in refining the 

application of AI in this domain. 

The results of this work offer significant 

implications for future research in computational 

chemistry, where AI models can be used to predict 

molecular behaviors and guide experimental 

design. By reducing the need for extensive trial-

and-error experiments, these models can accelerate 

the discovery of new biomolecular interactions, 

aiding in fields ranging from biochemistry to 

pharmaceuticals. 

In conclusion, the integration of artificial 

intelligence into the study of molecular solution 

properties represents a powerful tool for both 

experimental and theoretical chemistry. This study 

not only contributes to a deeper understanding of 

nucleic acid base interactions in solution but also 

lays the foundation for broader applications in 

molecular science and biomolecular research. 
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