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Abstract 
Artificial intelligence (AI) has rapidly moved from a promising add-on to a central driver of discovery in 

chemistry, materials science, and catalysis. Data-centric workflows, graph and equivariant neural networks, 

and increasingly capable language-and-tool agents now accelerate prediction, design, and even autonomous 

experimentation. This paper surveys core representations and model classes; benchmarks and datasets that 

anchor progress; landmark results including large-scale inorganic materials discovery and self-driving 

laboratories; and domain-specific advances in reaction prediction, retrosynthesis, and heterogeneous 

catalysis. We close with limitations—data fidelity, uncertainty, synthesis bottlenecks, and reproducibility—

and outline practical steps toward trustworthy, closed-loop discovery. 

 

1. Introduction 

Modern chemical and materials discovery faces 

combinatorial spaces (10^60 molecules, millions of 

possible inorganic crystals, and vast catalyst–

adsorbate–condition combinations). AI narrows 

these spaces by learning structure–property 

relationships, guiding inverse design, and 

orchestrating automated experiments. In 2023–

2024, two milestones crystallized the promise and 

the caveats: Google DeepMind’s GNoME scaled 

deep learning to propose ~2.2 million hypothetical 

crystals and ~381k predicted-stable compositions, 

while Lawrence Berkeley National Laboratory’s A-

Lab converted algorithmic suggestions into 41 

successful syntheses out of 58 candidates in 17 

days—demonstrating closed-loop acceleration but 

also exposing synthesis and validation limits.  

 

2. Molecular and Materials Representations 

Strings and graphs. Early neural models encoded 

molecules as SMILES strings; robustness issues 

motivated SELFIES, a 100% valid molecular string 

language that improved generative design by 

ensuring any produced token sequence maps to a 

valid molecule.  

Crystal graphs. For inorganic solids, Crystal Graph 

Convolutional Neural Networks (CGCNN) 

represent periodic structures as atom-bond graphs 

with periodic edges, enabling supervised learning 

of DFT-level properties. CGCNN and successors 

underlie many state-of-the-art predictors and appear 

widely in workflows and codebases.  

Equivariance and physics priors. For atomistic 

energies, forces, and adsorption geometries, E(3)-

equivariant architectures (e.g., SchNet variants, 

GemNet-OC, eSCN) enforce rotational and 

translational symmetries, dramatically improving 

data efficiency in materials and catalysis tasks (see 

§5 datasets OC20/OC22).  

 

 

3. Model Classes and Tasks 

Property prediction. Supervised GNNs and 

message-passing models predict band gaps, 

formation energies, elastic constants, and 

adsorption energies with accuracy competitive with 

or complementing DFT, especially when trained on 

large curated sets. Matbench standardized 13 

inorganic tasks to compare algorithms and reduce 

benchmark leakage. Generative and inverse design. 

Diffusion/VAEs/transformers over SELFIES or 

graphs enable constrained generation (e.g., target 

property-guided molecules or crystals). For 

surfaces, task-specific GNNs estimate adsorption 

energies orders of magnitude faster than ab initio, 

enabling broader screens.  

Language-and-tool agents. LLM agents augmented 

with cheminformatics, simulation, and literature 

tools (e.g., ChemCrow) can plan syntheses, design 

experiments, and execute multi-step reasoning, 

while newer evaluations probe chemical knowledge 

and reasoning limits. Autonomous labs. Active-

learning loops couple predictors with robotics and 

characterization (e.g., A-Lab), turning AI 

suggestions into validated compounds and feeding 

results back into models.  

 

4. AI for (Small-Molecule) Chemistry 

Forward reaction prediction. The Molecular 

Transformer framed product prediction as 

sequence-to-sequence translation with calibrated 

uncertainty, achieving state-of-the-art accuracy and 

practical confidence estimates. This catalyzed a 

wave of transformer-based models for yield, 

selectivity, and condition prediction. Retrosynthesis 

and route planning. Template-based, template-free, 

and hybrid methods continue to advance; recent 

work targets interpretability (e.g., RetroExplainer) 

and self-improving search (e.g., ReSynZ), while 

reviews consolidate best practices and pitfalls (data 

bias, action spaces, evaluation). LLMs as lab 

copilots. ChemCrow integrates 10+ expert tools 
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with an LLM to carry out tasks spanning synthesis 

planning to materials design; related systems (e.g., 

Coscientist) show autonomous experimental design 

and execution with tool use, but reliability and 

safeguards remain active concerns.  

 

5. AI for Materials Discovery 

Benchmarks and leaderboards. Matbench (and 

Matbench-Discovery) provide standardized tasks 

and train/test splits for fair comparison, analogous 

to ImageNet’s role in CV, and have become the 

default yardstick for solid-state prediction models. 

Scaling laws and foundation models for crystals. 

GNoME demonstrated that scaling data and model 

capacity can expand the known thermodynamic 

convex hull by an order of magnitude. However, 

predictions alone are not sufficient: stability ≠ 

synthesizability, and reproducibility depends on 

experimentalcontext. The A-Lab’s high conversion 

rate offers a template for closing this gap via active 

learning and robotics. Independent news and 

perspectives highlight both excitement and over-

claim risks.  

Open data and community challenges. Open 

Catalyst Project (OCP) organizes large-scale 

community benchmarks (OC20/OC22) for surface–

adsorbate energetics with S2EF and IS2RE tasks, 

spurring progress in equivariant GNNs and data-

efficient training; related leaderboards and 

challenges continue to raise the bar.  

 

6. AI in (Heterogeneous) Catalysis 

From descriptors to learned energetics. Traditional 

volcano-plot descriptors (e.g., adsorption energies) 

can be learned directly with GNNs, enabling rapid 

exploration of catalyst composition, structure, and 

adsorbate coverage without exhaustive DFT. 

GAME-Net and related models deliver fast 

adsorption-energy estimates for large organics on 

surfaces. Comprehensive reviews and perspectives. 

Recent reviews summarize how ML helps bridge 

the “complexity gap” between idealized 

calculations and realistic catalytic interfaces 

(defects, solvents, potentials), document ML-

accelerated simulations (ML potentials, enhanced 

sampling), and assess HTE+ML strategies. 

Equivariant models & datasets. OCP’s OC20/OC22 

datasets define adsorption-energy and force-

prediction tasks across millions of DFT 

calculations, establishing shared metrics and 

training regimes (e.g., joint training improvements, 

learning long-range interactions in oxides). 

Emerging frontiers. Generative AI for catalyst 

design, LLM-assisted experimentation, and 

domain-specific tools for single-atom catalysts are 

expanding the design space; however, validation 

and mechanistic interpretability remain gating 

factors for practical deployment.  

 

7. Reliability, Reproducibility, and Responsible 

Use 

Data quality and shift. Reaction datasets (text-

mined, proprietary) and materials repositories 

(computed vs. experimental) contain biases and 

inconsistencies; models can silently exploit 

artifacts. Community benchmarks (Matbench, 

OCP) and stronger dataset documentation help, but 

domain shift to real-world conditions (impurities, 

morphology, electrolytes) is substantial. 

Uncertainty and calibration. Calibrated 

probabilities (e.g., Molecular Transformer’s 

uncertainty estimator) and conformal prediction can 

triage risky model recommendations and guide 

active learning. Synthesis bottlenecks. Large-scale 

proposals (e.g., GNoME) must pass through the 

sieve of synthesizability and utility; autonomous 

labs reduce cycle time but still face reagent 

handling, phase purity, and characterization 

challenges. Balanced media coverage and post-

publication critique caution against hype. Human-

in-the-loop. The most robust systems pair models 

with expert priors, mechanistic reasoning, and 

interpretable features (e.g., mechanistically 

grounded reaction descriptors), with LLM agents 

serving as copilots rather than replacements.  

 

8. Practical Guidance for Teams 

1. Start with the right representation and 

benchmark. For molecules, consider SELFIES for 

generation and graph encodings for prediction; for 

crystals, use CGCNN-style graphs or equivariant 

models. Validate on Matbench-style splits; for 

catalysis, adopt OC20/OC22 task definitions.  

2. Exploit active learning. Prioritize experiments 

that maximally reduce uncertainty; close the loop 

with robotics where possible (or virtual HTE).  

3. Use agents carefully. LLM-and-tools systems 

(e.g., ChemCrow) can draft routes and automate 

routine tasks; enforce guardrails, audit trails, and 

human review.  

4. Report uncertainty and provenance. Track 

dataset origin, preprocessing, and confidence; 

prefer physically consistent models (equivariance, 

constraints).  

 

5. Plan for synthesis and scale-up. Couple model-

suggested targets with retrosynthetic feasibility, 

substrate/cost constraints, and process 

considerations; test with small standardized 

campaigns before scaling.  

9. Outlook 
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The trajectory is clear: richer multimodal data (text, 

spectra, microscopy), larger and more physically 

grounded models, and tighter automation will 

continue to compress the idea-to-material 

timescale. Yet progress depends on rigorous 

benchmarks, honest uncertainty, and mechanisms 

to turn predictions into validated function. The 

most impactful systems will not simply “find” new 

molecules or materials—they will explain why they 

work, make them reliably, and measure them 

reproducibly. 
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