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Abstract 
Quantum biology investigates how non-trivial quantum phenomena such as coherence, tunnelling, 

superposition, and entanglement manifest in biological systems. While traditionally studied through 

experimental spectroscopy and theoretical quantum models, the complexity of biological environments makes 

it difficult to extract mechanistic insights. Artificial Intelligence (AI), particularly machine learning and deep 

learning, has emerged as a powerful toolkit to address these challenges by accelerating simulations, 

analyzing high-dimensional datasets, learning effective Hamiltonians, and predicting system dynamics. This 

paper provides a comprehensive exploration of how AI is being integrated into quantum biology research, 

focusing on key biological processes such as photosynthetic energy transfer, enzymatic hydrogen tunnelling, 

and magnetoreception. It also discusses the role of AI in spectral inversion, surrogate modelling of quantum 

dynamics, reinforcement learning for quantum control, and graph-based learning for structure–function 

relationships in biomolecules. The paper concludes by outlining challenges in data scarcity, interpretability, 

and experimental validation, and highlights future prospects of AI-enhanced spectroscopy, foundation models 

for quantum-bio spectra, and hybrid quantum–AI workflows. 
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1. Introduction 

The fields of artificial intelligence (AI) and 

quantum biology represent two of the most 

transformative scientific frontiers of the 21st 

century. Historically distinct, their convergence is 

now forging a new paradigm for investigating the 

fundamental processes of life. Quantum biology 

explores the phenomenon that certain biological 

systems appear to utilize non-trivial quantum 

mechanical effects—such as coherence, 

entanglement, and tunneling—to perform functions 

that are either impossible or far less efficient in a 

classical regime (Al-Khalili & McFadden, 2020). 

These effects are hypothesized to play a critical role 

in processes including photosynthesis (Engel et al., 

2007), magnetoreception (Hiscock et al., 2016), 

enzyme catalysis, and olfaction (Turin et al., 2014). 

However, the empirical and theoretical study of 

these phenomena is profoundly challenging. 

Biological systems are inherently complex, high-

dimensional, and noisy, operating at the delicate 

interface where quantum effects battle against 

decoherence. Traditional computational methods 

often struggle to simulate these systems with 

sufficient accuracy or to extract meaningful 

patterns from the complex, high-dimensional data 

generated by spectroscopic and single-molecule 

experiments (Lloyd et al., 2011). This is where 

artificial intelligence, particularly machine learning 

(ML) and deep learning (DL), emerges as a 

powerful ally. AI excels at identifying complex, 

non-linear patterns in large datasets, optimizing 

high-dimensional parameters, and generating 

predictive models where first-principles 

calculations are intractable (Carleo et al., 2019). 

The integration of AI into quantum biology is 

rapidly moving from a theoretical possibility to a 

practical necessity. AI methods are being deployed 

to analyze spectroscopic data to identify signatures 

of quantum coherence, to parameterize and 

simulate open quantum systems, to discover new 

bio-molecules with potential quantum 

functionalities, and to design experiments that can 

test the limits of quantum effects in biology (Schätz 

et al., 2022). This synergy offers a path to move 

from merely observing quantum effects to truly 

understanding their biological function and 

evolutionary advantage. 

This manuscript aims to provide a comprehensive 

review of the burgeoning intersection of AI and 

quantum biology. We will first delineate the key AI 

methods—including neural networks, kernel 
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methods, and reinforcement learning—that are 

most relevant to quantum biological problems. 

Subsequently, we will detail their specific 

applications across major domains such as 

photosynthetic energy transfer, avian 

magnetoreception, and enzymatic catalysis. Finally, 

we will critically discuss the current limitations, 

ethical considerations, and promising future 

directions of this interdisciplinary field, arguing 

that AI is not merely a tool but a transformative 

catalyst poised to unlock the deepest secrets of life 

at the quantum scale. 

2. Quantum Effects in Biology 

2.1 Photosynthetic Energy Transfer 

Photosynthesis is one of the most extensively 

studied quantum biological systems. Light-

harvesting complexes in plants, algae, and bacteria 

capture photons and transfer excitation energy to 

reaction centers with remarkable efficiency. 

Experiments using ultrafast spectroscopy have 

revealed oscillatory signals interpreted as evidence 

of quantum coherence. These oscillations raise 

fundamental questions about whether quantum 

coherence directly contributes to energy transfer 

efficiency or whether they are byproducts of 

vibronic couplings. 

Artificial Intelligence plays an increasingly 

important role in analyzing such data. Machine 

learning algorithms are applied to interpret complex 

spectroscopic signals, filter noise, and reconstruct 

excitonic Hamiltonians. By learning from large 

simulated datasets, AI models can predict site 

energies, couplings, and coherence times more 

rapidly than traditional methods, allowing 

researchers to test hypotheses about the role of 

quantum coherence in photosynthetic efficiency. 

2.2 Enzymatic Hydrogen Tunnelling 

Enzyme-catalyzed reactions often proceed at rates 

far exceeding those predicted by classical models 

of transition-state theory. A prominent explanation 

involves quantum tunnelling, where hydrogen 

nuclei penetrate energy barriers instead of 

surmounting them. Experimental evidence such as 

kinetic isotope effects supports this hypothesis. 

AI provides tools to model the coupling between 

protein dynamics and tunnelling events. By training 

machine learning potentials on quantum 

mechanics/molecular mechanics (QM/MM) 

simulations, researchers can capture the interplay 

between fast quantum tunnelling and slower 

conformational motions in proteins. This 

integration allows the exploration of mutation 

effects, catalytic efficiency, and the role of quantum 

effects in enzyme evolution. 

 

2.3 Magnetoreception and Spin Chemistry 

The ability of migratory birds and other animals to 

sense the Earth’s magnetic field has been linked to 

radical-pair mechanisms in cryptochrome proteins. 

These mechanisms involve spin-correlated radical 

pairs whose dynamics are influenced by external 

magnetic fields and internal hyperfine interactions. 

Small variations in spin dynamics can lead to 

measurable biological signals, suggesting a 

quantum underpinning to magnetoreception. 

Here too, AI aids in parameter estimation and 

model validation. Machine learning methods can 

infer hyperfine couplings, recombination rates, and 

spin relaxation parameters from experimental data 

and behavioral assays. Reinforcement learning 

approaches may also be applied to optimize 

experimental conditions that amplify weak 

magnetic responses, thereby providing stronger 

evidence for radical-pair-based magnetoreception. 

3. AI Applications in Quantum Biology 

3.1 Spectral Inversion and Parameter Learning 

One of the central challenges in quantum biology is 

the extraction of system parameters from complex 

spectroscopic data. Traditional fitting approaches 

often fail due to overlapping peaks, noise, and high-

dimensional parameter spaces. AI addresses these 

challenges by mapping spectroscopic data directly 

to underlying physical parameters using supervised 

learning models. Neural networks trained on 

synthetic spectra can efficiently predict 

Hamiltonian parameters, spectral densities, and 

kinetic rates, significantly reducing analysis time. 

3.2 Surrogates for Quantum Dynamics 

Simulating quantum dynamics in large biological 

systems is computationally prohibitive. 

Hierarchical equations of motion and other 

numerically exact methods scale poorly with 

system size. AI provides surrogate models that 

learn mappings from system parameters to quantum 

dynamics, bypassing costly recursive propagation. 

Such models maintain high accuracy while offering 

orders-of-magnitude speed improvements, making 

it possible to scan large parameter spaces and study 

functional consequences of small quantum effects. 

3.3 Reinforcement Learning for Quantum 

Control 

Designing laser pulses and experimental conditions 

to probe quantum phenomena in biology is a 

complex optimization problem. Reinforcement 

learning algorithms can autonomously discover 

pulse shapes that maximize coherence lifetimes or 

enhance energy transfer pathways, even in the 

presence of decoherence. These approaches also 

adapt to experimental drifts, making them practical 

for laboratory applications. 
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3.4 Graph Neural Networks for Structure–

Function Mapping 

Biological quantum processes depend on molecular 

structures and their dynamics. Graph neural 

networks (GNNs), which represent proteins as 

graphs of residues or atoms, can learn structure–

function relationships. For example, GNNs can 

predict excitonic couplings in pigment–protein 

complexes, hydrogen-bonding networks that 

facilitate tunnelling, or hyperfine interactions in 

radical pairs. By linking structural features directly 

to quantum functionality, AI helps identify critical 

residues or domains for targeted experimental 

studies. 

4. Case Studies 

4.1 Photosynthesis 

Deep learning regressors applied to two-

dimensional electronic spectroscopy data of the 

Fenna–Matthews–Olson complex and light-

harvesting complexes have successfully extracted 

site energies and couplings. Action-detected 

spectroscopy combined with AI has further allowed 

the mapping of coherent dynamics to 

photochemical outputs, bridging the gap between 

quantum coherence and biological function. 

4.2 Enzymatic Catalysis 

Machine learning-driven molecular simulations 

have enabled the study of hydrogen tunnelling in 

alcohol dehydrogenase and other enzymes. These 

studies reveal how protein motions act as “gates” 

for tunnelling and how mutations modulate 

tunnelling efficiency. AI accelerates the exploration 

of vast sequence and conformational spaces, 

supporting the development of new hypotheses 

about enzyme evolution. 

4.3 Magnetoreception 

AI models applied to spin chemistry predict angular 

sensitivity of radical pairs under different noise 

conditions. By fitting experimental 

magnetosensitivity data, machine learning helps 

validate the radical-pair hypothesis. Reinforcement 

learning has been proposed to design light-

illumination protocols that maximize observable 

responses, providing a powerful tool for 

experimental verification. 

5. Challenges 

Despite rapid progress, several challenges remain. 

One is the scarcity of experimental datasets, which 

limits the training of AI models. While simulations 

can provide synthetic data, they risk introducing 

biases if the models used are incomplete. Another 

challenge is the interpretability of AI models, which 

must respect physical constraints such as 

conservation laws and positivity of density 

matrices. Additionally, there is the risk of 

overclaiming “quantum advantages,” as not all 

quantum biological phenomena necessarily require 

quantum mechanics for functional explanation. 

6. Future Outlook 

The integration of AI into quantum biology is still 

in its early stages but holds immense potential. In 

the near future, AI-enhanced spectroscopy pipelines 

could automate data collection, denoising, and 

inversion. Foundation models trained on vast 

simulated datasets could serve as general-purpose 

predictors of quantum-biological spectra. 

Reinforcement learning could operate in real time 

within experimental setups, guiding laser pulses or 

magnetic fields to reveal hidden quantum effects. 

Finally, cross-fertilization between quantum 

biology and quantum technologies may yield 

insights beneficial to both fields, such as noise 

management in quantum sensors or bio-inspired 

quantum computing algorithms. 

7. Conclusion 

Artificial Intelligence has become a transformative 

force in quantum biology, enabling researchers to 

analyze complex data, accelerate simulations, and 

design new experiments. Its applications span 

photosynthetic energy transfer, enzymatic 

tunnelling, and magnetoreception, each of which 

represents a frontier in understanding the quantum 

foundations of life. Overcoming challenges of data 

scarcity, interpretability, and experimental 

validation will be crucial for realizing the full 

potential of AI. Looking ahead, the synergy 

between AI and quantum biology promises not only 

deeper scientific insights but also practical 

innovations in medicine, energy, and quantum 

technology. 
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