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Abstract 
Aquaculture is a cornerstone of global food security, yet its rapid expansion has intensified concerns over 

environmental sustainability, predominantly due to inefficient feed management practices. These traditional 

methods often lead to substantial nutrient waste and subsequent water pollution. This paper presents a novel 

framework that employs Reinforcement Learning (RL) to dynamically optimize feed disbursement in closed-

containment recirculating aquaculture systems (RAS). In contrast to conventional fixed-schedule feeding 

regimes that are inherently suboptimal, our approach utilizes a Deep Q-Network (DQN) agent. This agent 

learns to adjust feed delivery in real-time, relying on a comprehensive state space that includes critical water 

quality parameters such as ammonia, nitrates, and dissolved oxygen, as well as fish biomass and observed 

feeding behavior. The framework was evaluated through simulations on a model of a commercial tilapia RAS 

over a 120-day growth cycle. The results demonstrate that the DQN-managed system reduced total feed 

consumption by 12.9% and improved the feed conversion ratio (FCR) by 12.7% compared to a standard fixed 

schedule, all while maintaining equivalent fish biomass at harvest. Crucially, this approach yielded an 18.3% 

reduction in predicted nitrogenous waste output. These findings establish a proof-of-concept that RL can 

simultaneously enhance the economic viability and environmental sustainability of aquaculture operations, 

representing a significant step towards the realization of precision aquaculture. 

Keywords: Sustainable Aquaculture, Reinforcement Learning, Deep Q-Network, Feed 

Optimization, Waste Reduction, Precision Aquaculture, Recirculating Aquaculture Systems (RAS). 

 

 

1. Introduction: The Imperative for Precision 

and Sustainability in Modern Aquaculture 

The global demand for aquatic protein has been met 

with a dramatic rise in aquaculture, which now 

supplies over 51% of all aquatic animal output for 

human consumption, surpassing capture fisheries 

for the first time in 2022. While this growth 

highlights the sector's potential to address global 

nutritional needs, its rapid expansion has created 

significant environmental challenges, including 

pollution from nutrient-rich effluents, biodiversity 

impacts, and the risk of disease transmission to 

wild populations. 

A primary source of these issues is inefficient feed 

management. Aquafeed represents the single largest 

operational cost for most farms, often accounting 

for up to 60% of total expenses. Feed is also the 

main contributor to waste, as uneaten pellets and 

fish feces lead to the release of nitrogen and 

phosphorus into the water. This can result in 

eutrophication and oxygen depletion that harm 

aquatic life. Traditional feeding strategies, which 

often rely on fixed schedules, fail to account for the 

dynamic interplay of environmental conditions, fish 

metabolism, and appetite. 

Recent advances in artificial intelligence (AI), 

particularly Reinforcement Learning (RL), provide 

a powerful framework for achieving this goal. RL 

is a computational approach where an agent learns 

an optimal policy through interaction with an 

environment to maximize a cumulative reward. 

This paper proposes a novel framework that applies 

a Deep Q-Network (DQN) to create an intelligent 

feeding system that dynamically adjusts feed 

disbursement, thereby minimizing waste and 

maximizing feed conversion efficiency. 

2. Foundational Principles of Aquaculture 

System Modeling 

To develop and validate a dynamic feeding 

framework, a comprehensive understanding of the 

underlying biological and environmental processes 

of a recirculating aquaculture system (RAS) is 

essential. The simulation environment relies on a 

fish bioenergetics model, a mass-balance equation 

that partitions energy from food into maintenance, 

waste, and growth. This approach provides a 

scientifically validated method for simulating fish 

consumption and growth under different scenarios 

without direct field measurements, which are time-

consuming and costly. The development of a 

bioenergetics model requires determining 

physiological parameters, corroborating the model 

with independent research, and conducting an error 

analysis. 
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Water quality within a RAS is also a delicate and 

complex task. As fish consume feed, they produce 

waste, and uneaten feed also contributes to the 

organic load. This waste is a primary source of 

ammonia, a compound that is highly toxic to fish, 

leading to stress, gill damage, and mortality at high 

concentrations. A biological filter within the RAS 

converts this ammonia into nitrite and then into 

nitrate, which are also toxic at high levels. Other 

critical parameters, such as dissolved oxygen (DO) 

and temperature, also influence fish health and 

feeding behavior. The table below outlines these 

key parameters and their optimal ranges. 

 

 

Parameter Optimal Range 

(Tilapia) 

Source of Waste/Origin Impact of Sub-Optimal Levels 

Temperature 20 to 30°C N/A Stress, reduced growth, altered metabolism 

pH 6.8 to 7.8 N/A Stress, poor growth, increased mortality 

Dissolved Oxygen ≥ 5 mg/L N/A Stress, reduced growth, poor feed 

conversion, mortality 

Ammonia < 1 mg/L Fish waste, uneaten feed Highly toxic, gill damage, death 

Nitrite < 0.5 mg/L Breakdown of ammonia by 

bacteria 

Toxic, stress, reduced growth, mortality 

Nitrate < 100 mg/L Breakdown of nitrite by 

bacteria 

Poor growth and health issues 

 

 

A simulation, however, is a simplified abstraction 

of reality and can never perfectly replicate a real-

world system. Global ocean models, for instance, 

operate at a resolution of approximately 100km per 

grid cell, which is insufficient to capture the highly 

site-specific conditions of a farm. The 

generalizability of simulation results varies, and it 

is crucial to vet model outputs against in-situ 

measurements. 

3. The Reinforcement Learning Framework for 

Dynamic Feed Optimization 

Reinforcement Learning provides a powerful 

computational framework for decision-making in 

dynamic environments where a sequence of actions 

leads to a long-term reward. In RL, an "agent" 

interacts with an "environment" by taking "actions" 

and observing the resulting new "state" and 

"reward". The agent's objective is to learn an 

optimal "policy" that maximizes the total 

cumulative reward over time. The Deep Q-Network 

(DQN) addresses the limitations of traditional Q-

learning by using a neural network to approximate 

the Q-value function, which estimates the expected 

cumulative reward for taking a specific action in a 

given state. 

A key component of DQN is Experience Replay, 

where past experiences are stored in a memory 

buffer and randomly sampled during training to 

stabilize the learning process. A separate Target 

Network is also used to compute the target Q-

values, which is periodically updated from the main 

network to prevent unstable training. 

The state space (St) for our RL agent is defined as: 

St = The action space (A) is discrete, offering a 

manageable set of choices: 

A = Reduce feed by 10%, Maintain current rate, 

Increase feed by 10%, No Feed. 

The reward function (Rt) is designed to encode the 

dual objectives of the project: economic efficiency 

and environmental sustainability. It is defined as: 

Rt = α . (Weight Gain) - β . (Uneaten Feed) - γ . 

(Ammonia Spike) 

4. Experimental Design and Simulation 

Methodology 

A dynamic simulation environment was developed 

in Python to model a recirculating aquaculture 

system for tilapia. The simulation integrates three 

primary components: a bioenergetics model to 

simulate fish growth, a water chemistry model to 

track concentrations of key parameters, and a 

stochastic element to model the variable appetite of 

the fish population based on environmental 

conditions. The DQN agent was trained over 1000 

episodes within the simulated environment. Its 

performance was evaluated by comparing its results 

against a baseline model using a standard fixed-
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schedule feeding protocol. The key performance 

metrics were Total Feed Used, Feed Conversion 

Ratio (FCR), Final Biomass, and Total Nitrogen 

Waste. 

5. Results and Comprehensive Impact Analysis 

The simulation results in Table 1 demonstrate the 

efficacy of the RL-based approach. The DQN agent 

learned a policy that led to a 12.9% reduction in 

total feed usage and a 12.7% improvement in FCR, 

without compromising fish growth. The agent's 

ability to adapt to the system's state contributed to a 

significant environmental benefit, with an 18.3% 

decrease in predicted nitrogen waste output. This 

reduction directly addresses a major source of 

water pollution and eutrophication in aquaculture, 

as a substantial portion of nitrogenous waste 

originates from uneaten feed. The improved feed 

efficiency and reduced waste also translate into a 

compelling economic advantage, as feed constitutes 

the largest operational expense in aquaculture. The 

synergy between economic incentive and 

environmental benefit highlights the robust solution 

presented by this framework. 

 

 

 

Table 1: Performance Comparison after 120-day Simulated Growth Cycle 

Metric Standard Fixed Schedule DQN-Managed System % Change 

 Total Feed Used (kg)  105.0  91.5  -12.9% 

 Feed Conversion Ratio (FCR)  1.65  1.44  -12.7% 

 Final Biomass (kg)  63.6  63.5  -0.16% 

 Total Nitrogen Waste (kg)  5.82  4.75  -18.3% 

 

6. Conclusion and Future Research Directions 

This study establishes a proof-of-concept that 

Reinforcement Learning can be effectively applied 

to optimize feed management in aquaculture. The 

DQN agent demonstrated a powerful ability to 

learn a dynamic feeding policy, leading to a 

significant reduction in feed usage, an improvement 

in FCR, and a decrease in nitrogen waste, all while 

maintaining equivalent fish growth. The primary 

limitation of this study is its reliance on a simulated 

environment, which is a simplified abstraction of 

reality. Therefore, the next crucial step is to 

validate these results through a physical pilot-scale 

RAS. Future work should also focus on expanding 

the state space to include additional water quality 

parameters and exploring multi-agent RL systems 

for larger operations. The integration of 

Reinforcement Learning represents a critical step 

towards realizing fully autonomous and intelligent 

aquaculture systems, empowering the industry to 

meet the growing global demand for protein in an 

economically viable and environmentally 

responsible manner. 

The below picture represents ‘The Reinforcement 

Learning Aquaculture Optimization Cycle’
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