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Abstract 
Relativistic cosmology provides the theoretical backbone for understanding the large-scale structure, origin, 

and evolution of the universe. While general relativity (GR) has successfully explained a wide range of 

phenomena, persistent cosmological puzzles such as dark energy, dark matter, and cosmic inflation suggest 

the need for extended or alternative frameworks. Artificial Intelligence (AI) has emerged as a transformative 

tool in physics research, enabling data-driven modelling, automated pattern recognition, and predictive 

simulations.  This paper explores the integration of AI techniques with relativistic cosmology, focusing on 

both observational and theoretical perspectives. We propose AI-assisted approaches for solving field 

equations, constraining modified gravity models, and enhancing cosmological parameter estimation. We 

further present AI-based frameworks for phase space analysis, gravitational wave signal extraction, and 

nonlinear dynamics in cosmology. The study highlights how AI-enhanced theoretical models can accelerate 

discovery, bridge gaps between theory and observation, and open new avenues for precision cosmology. 
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1. Introduction 

Relativistic cosmology, grounded in Einstein’s 

General Relativity (GR), has provided an elegant 

description of the large-scale universe. From the 

prediction of cosmic expansion to the formation of 

structure and the imprint of the Cosmic Microwave 

Background (CMB), relativistic frameworks have 

shaped our understanding of the cosmos (Peebles 

1993; Weinberg 2008). The standard cosmological 

model, ΛCDM, has been remarkably successful in 

explaining a wide range of observations, yet it 

remains incomplete. Fundamental puzzles such as 

the nature of dark energy, the identity of dark 

matter, the cosmological constant problem, and 

tensions in the Hubble constant (H₀) suggest that 

modifications or extensions of relativistic 

cosmology may be required (Riess et al. 2019; 

Verde, Treu & Riess 2019). To address these 

challenges, numerous extended frameworks have 

been proposed, including 

𝑓(𝑅), 𝑓(𝑇), 𝑓(𝑄) and 𝑓(𝑄, 𝑇) gravity, as well as 

fractal and nonlocal cosmologies (Capozziello & 

De Laurentis 2011; Nojiri & Odintsov 2017). While 

these models provide richer dynamics, they often 

lead to highly nonlinear field equations that are 

analytically intractable and computationally 

demanding. Traditional approaches rely on 

perturbation theory, numerical solvers, or restrictive 

assumptions to make progress (Clifton et al. 2012). 

Parallelly, Artificial Intelligence (AI) has 

revolutionized diverse scientific domains by 

enabling the analysis of high-dimensional data, 

pattern recognition, symbolic regression, and 

predictive modelling (LeCun, Bengio & Hinton 

2015; Goodfellow, Bengio & Courville 2016). In 

cosmology, AI has already demonstrated impressive 

capabilities in gravitational wave detection (George 

& Huerta 2018; Wang, Li & Zhang 2020), large-

scale structure analysis (Ribli, Pataki & Csabai 

2019), and black hole imaging (Event Horizon 

Telescope Collaboration 2019). However, its 

integration into theoretical relativistic cosmology 

where it could assist in solving complex field 

equations, exploring phase spaces, and constraining 

cosmological parameters remains underdeveloped. 

This paper is motivated by the need to explore how 

AI-enhanced methodologies can be embedded into 

relativistic cosmology to accelerate theoretical 

developments, link models with observational 

constraints, and generate new predictions. 

Specifically, we investigate how AI can play a 

transformative role in relativistic cosmology by 

symbolically approximating solutions to modified 

Einstein field equations, uncovering dynamical 

stability regimes in cosmological phase spaces, 

accelerating gravitational wave cosmology tests for 

extended theories of gravity, and enhancing 

parameter estimation pipelines in scenarios that go 

beyond the ΛCDM framework. 

The paper is organized as follows: Section 2 

provides a critical overview of relativistic 

cosmology, extensions to modified gravity theories, 



Vidyabharati International Interdisciplinary Research Journal                                                                ISSN 2319-4979 

 

National Conference on Intelligent Future: Multidisciplinary Approaches to Artificial Intelligence  

[IFMAAI-2025] 30 August, 2025                                             Page | 515   

and existing AI applications in both observational 

and theoretical physics. Section 3 outlines our 

proposed AI-enhanced frameworks for solving field 

equations, performing phase space analysis, 

gravitational wave tests, and cosmological 

parameter estimation. Section 4 presents 

conceptual outcomes, including prototype AI-

assisted models, stability analysis, and comparative 

insights between traditional and AI-based 

approaches. Section 5 discusses the potential of AI 

in addressing outstanding challenges in relativistic 

cosmology, such as dark sector dynamics, multi-

messenger cosmology, and connections with 

quantum gravity. Finally, Section 6 summarizes our 

findings, emphasizing how AI can open new 

frontiers in theoretical cosmology and serve as a 

bridge between abstract mathematical models and 

empirical validation. Through this structure, the 

paper aims to establish a novel research direction at 

the intersection of relativistic cosmology and 

artificial intelligence, demonstrating that AI can 

serve not merely as a computational tool but as an 

intellectual partner in theoretical discovery. 

2. Overview of Relativistic Cosmology and 

Modified Gravity:  
General relativity (GR) is well-tested on solar-

system scales, yet cosmological observations 

including late-time acceleration, early inflation, and 

gravitational wave constraints motivate extensions 

of GR. Key frameworks include 

𝑓(𝑅), 𝑓(𝑄), 𝑓(𝑇) gravity and fractal cosmologies. 

𝑓(𝑅) gravity extends the Einstein–Hilbert action 

with a function of the Ricci scalar, offering 

geometric explanations for dark energy and 

inflation without exotic fields, though higher-order 

dynamics may induce instabilities (Sotiriou & 

Faraoni, 2010). 𝑓(𝑄) gravity built on the non-

metricity scalar, this symmetric teleparallel theory 

yields second-order equations, naturally modelling 

cosmic acceleration while avoiding higher-

derivative ghosts (Jiménez et al., 2019). 𝑓(𝑇) 

gravity based on the torsion scalar in teleparallel 

GR, it produces second-order equations and mimics 

dark energy behaviour, but local Lorentz invariance 

issues remain (Cai et al., 2016). Fractal 

cosmologies modify the action measure to 

incorporate fractal geometry, providing alternative 

explanations for dark energy and bouncing models, 

though largely phenomenological (Calcagni, 2010). 

Despite their potential, these frameworks yield 

nonlinear equations requiring approximations or 

heavy numeric, highlighting the promise of AI-

assisted symbolic solutions and efficient parameter 

estimation. In observational Cosmology, AI 

accelerates discovery across datasets. Deep learning 

enables rapid gravitational wave detection (George 

& Huerta, 2018), enhances CMB analysis (Auld et 

al., 2007), and reconstructs black hole images from 

sparse data. In Theoretical Physics, AI explores 

symbolic regression, reinforcement learning, and 

neural ODE solvers approximate nonlinear 

equations (Udrescu & Tegmark, 2020). Neural 

networks detect invariants, recovering conservation 

laws and guiding model building (Iten et al., 2020). 

Phase space methods reconstruct attractors and 

classify stability regimes in inflation, modified 

gravity, and dark energy. Together, these AI tools 

complement traditional techniques, accelerating 

symbolic, stability, and theoretical insights in 

cosmology. 

3. Methodology 

AI-Enhanced Field Equation Solving: Modified 

cosmological models often yield highly nonlinear 

differential equations that are analytically 

intractable. AI-driven symbolic regression, 

including genetic programming and neural-

symbolic learning, generates approximate analytic 

solutions and uncovers hidden algebraic structures 

in Einstein’s equations. Reinforcement learning 

further refines these approximations by minimizing 

residuals and enforcing physical consistency 

(Udrescu & Tegmark, 2020; Cranmer et al., 2020). 

These approaches reduce brute-force numerical 

integration and provide interpretable forms, 

offering insights in non-standard cosmologies 

where closed-form solutions are rare. 

Dynamical Systems and Phase Space Analysis: 
Cosmological models are analysed via dynamical 

systems, where critical point stability governs 

evolution. AI enhances this by classifying 

attractors, repellers, and saddle points in high-

dimensional spaces. Deep learning approximates 

phase flows, and clustering reveals hidden 

attractors (Chen et al., 2018; Vlachas et al., 2020). 

Reinforcement learning identifies optimal 

trajectories and bifurcation parameters, 

strengthening stability analyses in dark energy, 

modified gravity, and early-universe scenarios 

beyond ΛCDM. 

AI for Gravitational Wave Cosmology: AI 

accelerates gravitational wave detection by learning 

waveform templates directly. Convolutional and 

recurrent networks enable real-time binary black 

hole merger detection (George & Huerta, 2018; 

Gabbard et al., 2018) and speed parameter 

estimation, revealing deviations signalling modified 

gravity (Chua & Vallisneri, 2020). 

AI for Parameter Estimation Beyond ΛCDM: AI 

emulators, including normalizing flows and 

Bayesian neural networks, perform rapid 

likelihood-free inference, reducing computational 

costs and exploring extended parameter spaces 
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evolving dark energy, modified gravity, and non-

Gaussian initial conditions while tightening 

constraints on fundamental physics (Jeffrey & 

Wandelt, 2020; Alsing et al., 2019). 

4. Results and Discussion 

4.1 Prototype AI-Supported Framework:  

We propose a conceptual AI-driven framework to 

accelerate theoretical and computational research in 

relativistic cosmology. It integrates symbolic 

regression, deep reinforcement learning, and data-

driven optimization to complement traditional 

analytic and numerical methods, operating in three 

stages: Input Layer (Theoretical Model 

Specification): The framework starts with 

specifying a gravitational model such as 

𝑓(𝑅), 𝑓(𝑄, 𝑇), 𝑓(𝐺)or more general formulations. 

These define modified Friedmann equations that 

are typically analytically intractable and costly to 

simulate. The input layer encodes these models 

along with initial/boundary conditions and 

observational priors (e.g., Planck 2018 CMB, BAO, 

supernovae), ensuring the AI operates within a 

physically consistent, data-informed domain. AI 

Engine (Learning Dynamics): Symbolic 

regression (SR) recovers approximate closed-form 

solutions, revealing relations among 𝐻(𝑧), 𝑞(𝑧) and 

matter–dark energy densities. Deep reinforcement 

learning (DRL) explores parameter spaces 

adaptively, rewarding observationally consistent 

trajectories while penalizing unstable ones. 

Surrogate modelling approximates differential 

equation solutions, bypassing heavy numerical 

integrations. Output Layer (Cosmological 

Insights): AI provides functional approximations 

for 𝑎(𝑡), 𝐻(𝑡), and 𝜌(𝑧), generates stability maps 

for attractors or singularities, accelerates Bayesian 

parameter inference (Ω𝑚,ω𝑜, 𝜔𝑎), and produces 

interpretable symbolic forms for dark energy and 

inflationary dynamics. In essence, the framework 

bridges abstract modelling with high-dimensional 

data analysis, enabling exploratory and 

confirmatory cosmological research, with potential 

future integration of multi-messenger probes. 

4.2 Insights from AI Integration:  

Artificial intelligence is transforming cosmological 

modelling, especially in modified gravity 

frameworks. Approximate Analytic Solutions: 

Field equations in 𝑓(𝑅), 𝑓(𝑄, 𝑇) and 𝑓(𝐺) gravity 

are highly nonlinear and usually solvable only 

numerically. AI-based symbolic regression provides 

approximate closed-form solutions that closely 

mimic exact results. Deep learning can recover 

functional forms for the scale factor, effective 

equation of state, or potential functions, revealing 

structural features of cosmological dynamics 

(Udrescu & Tegmark 2020; Cranmer et al., 2020). 

Phase Space Reconstruction and Stability 

Analysis: Stability of accelerating or bouncing 

universes demands detailed dynamical systems 

analysis. AI accelerates this by clustering 

trajectories, mapping attractors, and identifying 

bifurcations. Neural networks and reinforcement 

learning efficiently classify attractors and predict 

acceleration regimes, outperforming traditional 

methods (Wang et al., 2020; He & Li 2021). This is 

crucial for testing observationally consistent 

cosmologies (Nojiri et al., 2017). Gravitational 

Wave Analysis: Observations constrain tensor 

perturbation speeds, excluding many modified 

theories. AI pipelines process large datasets in near 

real time, distinguishing GR from 𝑓(𝑅) type 

signatures, and drastically reducing matched-

filtering costs (George & Huerta 2018; Krastev 

2020). 

Overall, AI accelerates computation and enables 

new pathways for analytic insight, stability 

analysis, and observational validation in relativistic 

cosmology. 

4.3 Comparative Advantages:  

The integration of AI into relativistic cosmology 

provides several advantages compared to traditional 

computational and analytical methods. 

Computational Efficiency: Traditional approaches 

rely on solving nonlinear differential equations with 

numerical solvers, which are computationally 

expensive, especially in higher-dimensional models 

or large parameter scans. AI can learn surrogate 

models that approximate exact solutions, enabling 

real-time evaluations once trained (Raissi et al., 

2019). This substantially reduces the computational 

burden for iterative tasks such as cosmological 

parameter fitting. Access to Approximate Analytic 

Solutions: Analytic solutions in modified gravity 

are often intractable due to nonlinearities of the 

field equations. AI-enhanced symbolic regression 

can discover approximate closed-form expressions 

that mimic exact solutions with reduced complexity 

(Udrescu & Tegmark, 2020). This bridges 

numerical results and analytic insights. Parameter 

Estimation and Constraints: Parameter inference 

typically involves MCMC or nested sampling, 

which are accurate but slow for large datasets (e.g., 

Planck, DESI, LIGO). AI accelerates inference 

through neural network emulators and 

reinforcement learning that adaptively target viable 

regions of parameter space (Alsing et al., 2019). 

Phase Space and Stability Analysis: Traditional 

dynamical systems analysis requires perturbation 

theory and extensive simulations. AI-assisted 

methods reconstruct phase space attractors and 

identify stability regions directly from simulations 

(Brunton et al., 2016). In summary, AI 
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complements rather than replaces traditional 

methods by offering efficiency, pattern recognition, 

and symbolic insight, transforming how 

cosmological models are tested and constrained. 

 
Traditional Approach AI-Enhanced Approach 

Requires heavy 

computation 

(ODE/PDE solvers). 

Learns surrogate models 

for fast evaluation. 

Analytic solutions 

limited. 

AI suggests symbolic 

approximations. 

Parameter estimation 

slow. 

AI accelerates inference by 

orders of magnitude. 

 

5. Future Prospects:  

The AI–cosmology interface is still in its early 

stages but holds immense potential to reshape 

theoretical and observational research. Hybrid AI 

Analytic Models: Traditional perturbation theory 

and dynamical systems approaches are rigorous but 

often intractable in nonlinear regimes. AI-driven 

symbolic regression can generate approximate 

closed-form solutions, validated against analytic 

results (Udrescu & Tegmark, 2020; Cranmer et al., 

2020), bridging the gap between exact solvability 

and brute-force numerics. Cosmological Big Data 

Fusion: Upcoming datasets from Euclid, SKA, 

LSST, and gravitational wave detectors require AI 

capable of cross-correlating CMB, gravitational 

waves, and large-scale structure data (Ntampaka et 

al., 2019; Fluke & Jacobs, 2020). This multi-

messenger approach will refine constraints on 

modified gravity and dark energy. AI for Quantum 

Gravity: AI can explore candidate quantum gravity 

models, including loop quantum cosmology, string 

cosmology, and emergent spacetime. 

Reinforcement learning and generative models can 

identify viable solutions in vast parameter spaces 

(Halverson et al., 2019; Ruehle, 2020). 

Explainable AI: Transparent, interpretable AI 

ensures physical insight alongside predictive 

accuracy (Ghosh et al., 2021; Samek et al., 2017). 

In summary, AI will enhance predictive power and 

interpretive frameworks, helping overcome 

computational bottlenecks and advancing our 

understanding of gravity, dark energy, and the 

universe’s origin. 

6. Conclusion 

Relativistic cosmology stands at a crossroads where 

traditional theoretical frameworks encounter 

computational bottlenecks, while observational 

puzzles demand innovative solutions. The 

integration of artificial intelligence (AI) offers 

transformative possibilities by enabling the 

extraction of approximate analytic solutions for 

complex modified field equations that were 

previously tractable only numerically (Karniadakis 

et al., 2021). AI-driven phase space reconstruction 

provides powerful tools to map stability regimes of 

accelerating cosmologies, bridging gaps between 

theoretical models and observational constraints 

(Raissi et al., 2019). Furthermore, AI-assisted 

gravitational wave pipelines accelerate the rejection 

of non-viable modified gravity models, enhancing 

the precision of cosmological diagnostics (George 

& Huerta, 2018). Collectively, these advancements 

position AI not merely as a supplementary tool but 

as a core methodology in theoretical cosmology. By 

integrating symbolic regression, reinforcement 

learning, and neural operators, researchers can 

accelerate discovery, refine predictions, and 

approach a deeper resolution of the universe’s dark 

sector and its dynamical evolution (Shen et al., 

2022). 
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